Properties

Degree $2$
Conductor $1205$
Sign $1$
Motivic weight $0$
Primitive no
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$\zeta_K(s)$  = 1  + 4-s + 5-s + 2·7-s + 9-s + 2·13-s + 16-s + 2·17-s + 20-s + 2·23-s + 25-s + 2·28-s + 2·29-s + 2·35-s + 36-s + 2·37-s + 2·41-s + 2·43-s + 45-s + 3·49-s + 2·52-s + 2·59-s + 2·61-s + 2·63-s + 64-s + 2·65-s + 2·68-s + 2·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda_K(s)=\mathstrut & 1205 ^{s/2} \, \Gamma_{\R}(s)^{2} \, \zeta_K(s)\cr =\mathstrut & \, \Lambda_K(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1205\)    =    \(5 \cdot 241\)
Sign: $1$
Primitive: no
Self-dual: yes
Selberg data: \((2,\ 1205,\ (0, 0:\ ),\ 1)\)

Particular Values

\[\zeta_K(1/2) \approx -1.182158125\]
Pole at \(s=1\)

Euler product

\(\zeta_K(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Factorization

\(\zeta_K(s) =\) \(\zeta(s)\)\(\;\cdot\) \(L(s,\chi_{1205}(1204, \cdot))\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line