Properties

Degree $2$
Conductor $1068$
Sign $1$
Motivic weight $0$
Primitive no
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$\zeta_K(s)$  = 1  + 2-s + 3-s + 4-s + 6-s + 2·7-s + 8-s + 9-s + 2·11-s + 12-s + 2·14-s + 16-s + 18-s + 2·19-s + 2·21-s + 2·22-s + 24-s + 25-s + 27-s + 2·28-s + 2·29-s + 2·31-s + 32-s + 2·33-s + 36-s + 2·38-s + 2·41-s + 2·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda_K(s)=\mathstrut & 1068 ^{s/2} \, \Gamma_{\R}(s)^{2} \, \zeta_K(s)\cr =\mathstrut & \, \Lambda_K(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1068\)    =    \(2^{2} \cdot 3 \cdot 89\)
Sign: $1$
Primitive: no
Self-dual: yes
Selberg data: \((2,\ 1068,\ (0, 0:\ ),\ 1)\)

Particular Values

\[\zeta_K(1/2) \approx -2.013693576\]
Pole at \(s=1\)

Euler product

\(\zeta_K(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Factorization

\(\zeta_K(s) =\) \(\zeta(s)\)\(\;\cdot\) \(L(s,\chi_{1068}(1067, \cdot))\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line