Properties

Label 4-1302e2-1.1-c1e2-0-48
Degree $4$
Conductor $1695204$
Sign $-1$
Analytic cond. $108.087$
Root an. cond. $3.22436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 2·7-s + 9-s − 2·12-s + 16-s + 12·17-s + 4·19-s − 4·21-s − 10·25-s + 4·27-s + 2·28-s − 12·29-s − 4·31-s + 36-s − 2·48-s + 3·49-s − 24·51-s + 12·53-s − 8·57-s + 2·63-s + 64-s − 8·67-s + 12·68-s + 20·75-s + 4·76-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 0.755·7-s + 1/3·9-s − 0.577·12-s + 1/4·16-s + 2.91·17-s + 0.917·19-s − 0.872·21-s − 2·25-s + 0.769·27-s + 0.377·28-s − 2.22·29-s − 0.718·31-s + 1/6·36-s − 0.288·48-s + 3/7·49-s − 3.36·51-s + 1.64·53-s − 1.05·57-s + 0.251·63-s + 1/8·64-s − 0.977·67-s + 1.45·68-s + 2.30·75-s + 0.458·76-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1695204 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1695204 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1695204\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(108.087\)
Root analytic conductor: \(3.22436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1695204,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
7$C_1$ \( ( 1 - T )^{2} \)
31$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57571100088867902110310233811, −7.30736703591147629891449858677, −6.87864980151121342962348950105, −6.06333025434356752156931321844, −5.64737274576622310994707396282, −5.57928681742950427486583645839, −5.40092555218885150177252880861, −4.66436777849708723827288400925, −3.87479063592422741555464845270, −3.69790693414722776307982968980, −3.04217899155351164880672408498, −2.32723227474234516009046308721, −1.49056098714278580820712650479, −1.20407232976019650888554434791, 0, 1.20407232976019650888554434791, 1.49056098714278580820712650479, 2.32723227474234516009046308721, 3.04217899155351164880672408498, 3.69790693414722776307982968980, 3.87479063592422741555464845270, 4.66436777849708723827288400925, 5.40092555218885150177252880861, 5.57928681742950427486583645839, 5.64737274576622310994707396282, 6.06333025434356752156931321844, 6.87864980151121342962348950105, 7.30736703591147629891449858677, 7.57571100088867902110310233811

Graph of the $Z$-function along the critical line