Properties

Label 4-80000-1.1-c1e2-0-9
Degree $4$
Conductor $80000$
Sign $-1$
Analytic cond. $5.10086$
Root an. cond. $1.50283$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·7-s + 8-s − 5·9-s − 4·14-s + 16-s + 6·17-s − 5·18-s − 12·23-s − 4·28-s + 4·31-s + 32-s + 6·34-s − 5·36-s − 6·41-s − 12·46-s − 24·47-s − 2·49-s − 4·56-s + 4·62-s + 20·63-s + 64-s + 6·68-s + 24·71-s − 5·72-s − 22·73-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.51·7-s + 0.353·8-s − 5/3·9-s − 1.06·14-s + 1/4·16-s + 1.45·17-s − 1.17·18-s − 2.50·23-s − 0.755·28-s + 0.718·31-s + 0.176·32-s + 1.02·34-s − 5/6·36-s − 0.937·41-s − 1.76·46-s − 3.50·47-s − 2/7·49-s − 0.534·56-s + 0.508·62-s + 2.51·63-s + 1/8·64-s + 0.727·68-s + 2.84·71-s − 0.589·72-s − 2.57·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(80000\)    =    \(2^{7} \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(5.10086\)
Root analytic conductor: \(1.50283\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 80000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5 \( 1 \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.828211755289408046473885177280, −8.984879988992018021562140214035, −8.305108042202074861058072254432, −8.071729218562685355881418106440, −7.50685211643047093775514357787, −6.51600833722009744085233889545, −6.35306147256574072432179047412, −5.92775363035311842870660338443, −5.34945783064988058695168525193, −4.74379980896905468893340943589, −3.73692800680606925562186179410, −3.29699975126484092788987476482, −2.93297962179085959554069000009, −1.90088015093802268091220378336, 0, 1.90088015093802268091220378336, 2.93297962179085959554069000009, 3.29699975126484092788987476482, 3.73692800680606925562186179410, 4.74379980896905468893340943589, 5.34945783064988058695168525193, 5.92775363035311842870660338443, 6.35306147256574072432179047412, 6.51600833722009744085233889545, 7.50685211643047093775514357787, 8.071729218562685355881418106440, 8.305108042202074861058072254432, 8.984879988992018021562140214035, 9.828211755289408046473885177280

Graph of the $Z$-function along the critical line