Properties

Label 4-260876-1.1-c1e2-0-2
Degree $4$
Conductor $260876$
Sign $1$
Analytic cond. $16.6336$
Root an. cond. $2.01951$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 2·9-s + 11-s + 16-s + 6·25-s + 2·36-s + 4·37-s + 44-s − 7·49-s + 4·53-s + 64-s + 24·67-s − 8·71-s − 5·81-s + 2·99-s + 6·100-s − 20·113-s + 121-s + 127-s + 131-s + 137-s + 139-s + 2·144-s + 4·148-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 1/2·4-s + 2/3·9-s + 0.301·11-s + 1/4·16-s + 6/5·25-s + 1/3·36-s + 0.657·37-s + 0.150·44-s − 49-s + 0.549·53-s + 1/8·64-s + 2.93·67-s − 0.949·71-s − 5/9·81-s + 0.201·99-s + 3/5·100-s − 1.88·113-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1/6·144-s + 0.328·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 260876 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260876 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(260876\)    =    \(2^{2} \cdot 7^{2} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(16.6336\)
Root analytic conductor: \(2.01951\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 260876,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.240779327\)
\(L(\frac12)\) \(\approx\) \(2.240779327\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + p T^{2} \)
11$C_1$ \( 1 - T \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
89$C_2$ \( ( 1 - p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.901043807505772270496559580452, −8.395607811720954841765968672470, −8.011119657909147300953524820841, −7.43887961932470076210113809368, −6.92729386640687152635053717930, −6.68958429938545382809359677306, −6.13457959830705833057754257493, −5.52075582489292781309550153862, −4.99724884061860764884236484895, −4.41724586149363676215234692744, −3.87528143167997590960012891784, −3.20415769548060747117531297053, −2.57328165327186777306749670782, −1.79727523088765617712474080432, −0.960769318426187613156128602249, 0.960769318426187613156128602249, 1.79727523088765617712474080432, 2.57328165327186777306749670782, 3.20415769548060747117531297053, 3.87528143167997590960012891784, 4.41724586149363676215234692744, 4.99724884061860764884236484895, 5.52075582489292781309550153862, 6.13457959830705833057754257493, 6.68958429938545382809359677306, 6.92729386640687152635053717930, 7.43887961932470076210113809368, 8.011119657909147300953524820841, 8.395607811720954841765968672470, 8.901043807505772270496559580452

Graph of the $Z$-function along the critical line