Properties

Label 4-190125-1.1-c1e2-0-1
Degree $4$
Conductor $190125$
Sign $-1$
Analytic cond. $12.1225$
Root an. cond. $1.86594$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4-s − 5-s − 8·8-s + 9-s − 2·10-s + 2·13-s − 7·16-s + 2·18-s + 20-s + 25-s + 4·26-s − 4·29-s + 14·32-s − 36-s + 20·37-s + 8·40-s − 45-s − 16·47-s − 14·49-s + 2·50-s − 2·52-s − 8·58-s − 4·61-s + 35·64-s − 2·65-s − 24·67-s + ⋯
L(s)  = 1  + 1.41·2-s − 1/2·4-s − 0.447·5-s − 2.82·8-s + 1/3·9-s − 0.632·10-s + 0.554·13-s − 7/4·16-s + 0.471·18-s + 0.223·20-s + 1/5·25-s + 0.784·26-s − 0.742·29-s + 2.47·32-s − 1/6·36-s + 3.28·37-s + 1.26·40-s − 0.149·45-s − 2.33·47-s − 2·49-s + 0.282·50-s − 0.277·52-s − 1.05·58-s − 0.512·61-s + 35/8·64-s − 0.248·65-s − 2.93·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190125 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190125 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(190125\)    =    \(3^{2} \cdot 5^{3} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(12.1225\)
Root analytic conductor: \(1.86594\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 190125,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$ \( 1 + T \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.843956595114680827452383410006, −8.526905706632633062975018882770, −7.76910750368042878757814163764, −7.68003844385765985083943135134, −6.63078439380576833175908493602, −6.20481649249773216903893847569, −5.86497653842965752491328535183, −5.27152076797277019902163228084, −4.52160444884874669934496061646, −4.46342990915686607443282092868, −3.92265287197659703286168465477, −3.01746980794826050429743741143, −3.01549784140686353642765162463, −1.41836019676092930181617969749, 0, 1.41836019676092930181617969749, 3.01549784140686353642765162463, 3.01746980794826050429743741143, 3.92265287197659703286168465477, 4.46342990915686607443282092868, 4.52160444884874669934496061646, 5.27152076797277019902163228084, 5.86497653842965752491328535183, 6.20481649249773216903893847569, 6.63078439380576833175908493602, 7.68003844385765985083943135134, 7.76910750368042878757814163764, 8.526905706632633062975018882770, 8.843956595114680827452383410006

Graph of the $Z$-function along the critical line