Properties

Label 4-225792-1.1-c1e2-0-5
Degree $4$
Conductor $225792$
Sign $1$
Analytic cond. $14.3966$
Root an. cond. $1.94789$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 9-s + 8·11-s − 4·13-s + 2·25-s + 16·31-s + 8·43-s − 4·45-s − 7·49-s − 32·55-s − 4·61-s + 16·65-s − 8·67-s + 81-s + 8·99-s − 36·101-s + 32·103-s − 24·107-s + 36·113-s − 4·117-s + 26·121-s + 28·125-s + 127-s + 131-s + 137-s + 139-s − 32·143-s + ⋯
L(s)  = 1  − 1.78·5-s + 1/3·9-s + 2.41·11-s − 1.10·13-s + 2/5·25-s + 2.87·31-s + 1.21·43-s − 0.596·45-s − 49-s − 4.31·55-s − 0.512·61-s + 1.98·65-s − 0.977·67-s + 1/9·81-s + 0.804·99-s − 3.58·101-s + 3.15·103-s − 2.32·107-s + 3.38·113-s − 0.369·117-s + 2.36·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.67·143-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225792 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225792 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(225792\)    =    \(2^{9} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(14.3966\)
Root analytic conductor: \(1.94789\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 225792,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.242914371\)
\(L(\frac12)\) \(\approx\) \(1.242914371\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.152797891745064115144378653628, −8.363976058602769231488256790631, −8.098990694093691505068092710868, −7.56975735076810513912224977904, −7.22105516751355937830285941842, −6.54491697858797937973081677578, −6.42897107072744719896577758454, −5.63168120431032402488374725093, −4.69719753757653070842273737242, −4.25303028692796488061253338187, −4.18766143896287814919024894984, −3.41088997198904527337952221517, −2.81065807634666280216127599883, −1.69952852024005505825174252057, −0.72841599673746501614747483703, 0.72841599673746501614747483703, 1.69952852024005505825174252057, 2.81065807634666280216127599883, 3.41088997198904527337952221517, 4.18766143896287814919024894984, 4.25303028692796488061253338187, 4.69719753757653070842273737242, 5.63168120431032402488374725093, 6.42897107072744719896577758454, 6.54491697858797937973081677578, 7.22105516751355937830285941842, 7.56975735076810513912224977904, 8.098990694093691505068092710868, 8.363976058602769231488256790631, 9.152797891745064115144378653628

Graph of the $Z$-function along the critical line