Properties

Label 4-627200-1.1-c1e2-0-14
Degree $4$
Conductor $627200$
Sign $1$
Analytic cond. $39.9908$
Root an. cond. $2.51472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·9-s + 10·11-s + 25-s − 4·43-s − 7·49-s − 4·67-s + 16·81-s + 50·99-s + 4·107-s + 24·113-s + 53·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 23·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 5/3·9-s + 3.01·11-s + 1/5·25-s − 0.609·43-s − 49-s − 0.488·67-s + 16/9·81-s + 5.02·99-s + 0.386·107-s + 2.25·113-s + 4.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(627200\)    =    \(2^{9} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(39.9908\)
Root analytic conductor: \(2.51472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 627200,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.030822964\)
\(L(\frac12)\) \(\approx\) \(3.030822964\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 95 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.521455345245001112488317077080, −7.84984766030852946182042531432, −7.38843679518220665352410091449, −6.92044437756212872992783719208, −6.63044337944935445697225456121, −6.32205538711025295033140637153, −5.77819728716918702728982249141, −4.94531345056739270198379869449, −4.50642093030574781942510062071, −4.12473919733775238792346824743, −3.66366247368100456878234938563, −3.21960941182837445196591190768, −2.06096235624409191184076120036, −1.50120231736739718802343325614, −1.04102015743648495412292434204, 1.04102015743648495412292434204, 1.50120231736739718802343325614, 2.06096235624409191184076120036, 3.21960941182837445196591190768, 3.66366247368100456878234938563, 4.12473919733775238792346824743, 4.50642093030574781942510062071, 4.94531345056739270198379869449, 5.77819728716918702728982249141, 6.32205538711025295033140637153, 6.63044337944935445697225456121, 6.92044437756212872992783719208, 7.38843679518220665352410091449, 7.84984766030852946182042531432, 8.521455345245001112488317077080

Graph of the $Z$-function along the critical line