Properties

Label 4-1900-1.1-c1e2-0-1
Degree $4$
Conductor $1900$
Sign $1$
Analytic cond. $0.121145$
Root an. cond. $0.589965$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 3·5-s + 9-s − 3·11-s + 16-s − 6·19-s − 3·20-s + 4·25-s − 3·29-s + 10·31-s + 36-s + 12·41-s − 3·44-s − 3·45-s − 4·49-s + 9·55-s − 6·59-s + 16·61-s + 64-s − 9·71-s − 6·76-s − 2·79-s − 3·80-s − 8·81-s + 9·89-s + 18·95-s − 3·99-s + ⋯
L(s)  = 1  + 1/2·4-s − 1.34·5-s + 1/3·9-s − 0.904·11-s + 1/4·16-s − 1.37·19-s − 0.670·20-s + 4/5·25-s − 0.557·29-s + 1.79·31-s + 1/6·36-s + 1.87·41-s − 0.452·44-s − 0.447·45-s − 4/7·49-s + 1.21·55-s − 0.781·59-s + 2.04·61-s + 1/8·64-s − 1.06·71-s − 0.688·76-s − 0.225·79-s − 0.335·80-s − 8/9·81-s + 0.953·89-s + 1.84·95-s − 0.301·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1900\)    =    \(2^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(0.121145\)
Root analytic conductor: \(0.589965\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5856958784\)
\(L(\frac12)\) \(\approx\) \(0.5856958784\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
19$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 7 T + p T^{2} ) \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 89 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + p T^{2} ) \)
97$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12629201823161730215632551035, −12.77978038682690811603907751033, −12.12462061109148388225220357108, −11.51959044376157204820634393232, −10.96581222542300546543217413733, −10.43360058383073541051440337968, −9.701139036768523738942555924982, −8.643755561385292296510754105134, −8.068899168563034845611018261769, −7.54335577564449427577768867852, −6.77565335418431214450302625944, −5.91364375610394068414214605262, −4.70053508669332129152077478238, −3.95180666919658488912421076947, −2.65340032178954426050786831781, 2.65340032178954426050786831781, 3.95180666919658488912421076947, 4.70053508669332129152077478238, 5.91364375610394068414214605262, 6.77565335418431214450302625944, 7.54335577564449427577768867852, 8.068899168563034845611018261769, 8.643755561385292296510754105134, 9.701139036768523738942555924982, 10.43360058383073541051440337968, 10.96581222542300546543217413733, 11.51959044376157204820634393232, 12.12462061109148388225220357108, 12.77978038682690811603907751033, 13.12629201823161730215632551035

Graph of the $Z$-function along the critical line