Properties

Label 4-105125-1.1-c1e2-0-8
Degree $4$
Conductor $105125$
Sign $1$
Analytic cond. $6.70286$
Root an. cond. $1.60903$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s − 5-s − 6·9-s − 12·11-s + 5·16-s − 4·19-s + 3·20-s + 25-s − 2·29-s + 4·31-s + 18·36-s + 4·41-s + 36·44-s + 6·45-s − 10·49-s + 12·55-s − 16·59-s − 12·61-s − 3·64-s − 24·71-s + 12·76-s − 20·79-s − 5·80-s + 27·81-s + 36·89-s + 4·95-s + 72·99-s + ⋯
L(s)  = 1  − 3/2·4-s − 0.447·5-s − 2·9-s − 3.61·11-s + 5/4·16-s − 0.917·19-s + 0.670·20-s + 1/5·25-s − 0.371·29-s + 0.718·31-s + 3·36-s + 0.624·41-s + 5.42·44-s + 0.894·45-s − 1.42·49-s + 1.61·55-s − 2.08·59-s − 1.53·61-s − 3/8·64-s − 2.84·71-s + 1.37·76-s − 2.25·79-s − 0.559·80-s + 3·81-s + 3.81·89-s + 0.410·95-s + 7.23·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105125 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105125 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(105125\)    =    \(5^{3} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(6.70286\)
Root analytic conductor: \(1.60903\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 105125,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( 1 + T \)
29$C_1$ \( ( 1 + T )^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.947550273198981438091464686696, −8.402368279712544431210177649490, −8.252858064103973279037456381237, −7.64947192507391358342580089136, −7.52061109178487627462618377984, −6.01956800466047829467852819351, −6.01134697239891133882099417885, −5.27104240153111024683298781878, −4.71404743035249738453779867980, −4.64971827708119930945851978376, −3.35895406827147515192265858691, −2.95203182599403093553876063934, −2.37337806558837572700935795284, 0, 0, 2.37337806558837572700935795284, 2.95203182599403093553876063934, 3.35895406827147515192265858691, 4.64971827708119930945851978376, 4.71404743035249738453779867980, 5.27104240153111024683298781878, 6.01134697239891133882099417885, 6.01956800466047829467852819351, 7.52061109178487627462618377984, 7.64947192507391358342580089136, 8.252858064103973279037456381237, 8.402368279712544431210177649490, 8.947550273198981438091464686696

Graph of the $Z$-function along the critical line