Properties

Label 4-320e2-1.1-c1e2-0-8
Degree $4$
Conductor $102400$
Sign $1$
Analytic cond. $6.52911$
Root an. cond. $1.59850$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 6·9-s − 25-s + 20·29-s + 20·41-s − 12·45-s − 14·49-s + 20·61-s + 27·81-s + 20·89-s + 4·101-s − 12·109-s − 22·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s + 40·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + ⋯
L(s)  = 1  + 0.894·5-s − 2·9-s − 1/5·25-s + 3.71·29-s + 3.12·41-s − 1.78·45-s − 2·49-s + 2.56·61-s + 3·81-s + 2.11·89-s + 0.398·101-s − 1.14·109-s − 2·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(102400\)    =    \(2^{12} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(6.52911\)
Root analytic conductor: \(1.59850\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 102400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.537338284\)
\(L(\frac12)\) \(\approx\) \(1.537338284\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.317356556158666156286958675354, −9.229738681555639603454604612144, −8.548239184977679663193402766242, −8.095900450392739090116843696578, −7.86574055998535746161422058704, −6.83957021602347792551015258406, −6.27282080646876620831649653268, −6.17090310700109824442559838984, −5.42644460572577514350636284077, −5.01452297596172644651029655270, −4.32056015764801105587344203662, −3.38983172672051634596756490050, −2.63895104553179739845027310173, −2.40245494881792658011192485726, −0.923744794836951703848041902340, 0.923744794836951703848041902340, 2.40245494881792658011192485726, 2.63895104553179739845027310173, 3.38983172672051634596756490050, 4.32056015764801105587344203662, 5.01452297596172644651029655270, 5.42644460572577514350636284077, 6.17090310700109824442559838984, 6.27282080646876620831649653268, 6.83957021602347792551015258406, 7.86574055998535746161422058704, 8.095900450392739090116843696578, 8.548239184977679663193402766242, 9.229738681555639603454604612144, 9.317356556158666156286958675354

Graph of the $Z$-function along the critical line