Properties

Label 4-210e2-1.1-c1e2-0-15
Degree $4$
Conductor $44100$
Sign $-1$
Analytic cond. $2.81185$
Root an. cond. $1.29493$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·5-s + 9-s − 8·11-s + 16-s − 8·19-s − 2·20-s − 25-s − 4·29-s + 36-s − 12·41-s − 8·44-s − 2·45-s + 49-s + 16·55-s + 8·59-s + 12·61-s + 64-s + 16·71-s − 8·76-s − 2·80-s + 81-s − 12·89-s + 16·95-s − 8·99-s − 100-s − 4·101-s + ⋯
L(s)  = 1  + 1/2·4-s − 0.894·5-s + 1/3·9-s − 2.41·11-s + 1/4·16-s − 1.83·19-s − 0.447·20-s − 1/5·25-s − 0.742·29-s + 1/6·36-s − 1.87·41-s − 1.20·44-s − 0.298·45-s + 1/7·49-s + 2.15·55-s + 1.04·59-s + 1.53·61-s + 1/8·64-s + 1.89·71-s − 0.917·76-s − 0.223·80-s + 1/9·81-s − 1.27·89-s + 1.64·95-s − 0.804·99-s − 0.0999·100-s − 0.398·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 44100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 44100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(44100\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(2.81185\)
Root analytic conductor: \(1.29493\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 44100,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10222911236604819137181073577, −9.609539393852220077143673737186, −8.562619095071442113234730966049, −8.356918966632091922574869118017, −7.88574577885540749242310978308, −7.38032510919396938987668647110, −6.84552480602986516155667793601, −6.26329280716131010417455818587, −5.33985014787602837985094112170, −5.12378349476991571111240043304, −4.16695804011400460755295047727, −3.62482887081886485478101246558, −2.64608459731855180821151512866, −2.06222634810600871012082383743, 0, 2.06222634810600871012082383743, 2.64608459731855180821151512866, 3.62482887081886485478101246558, 4.16695804011400460755295047727, 5.12378349476991571111240043304, 5.33985014787602837985094112170, 6.26329280716131010417455818587, 6.84552480602986516155667793601, 7.38032510919396938987668647110, 7.88574577885540749242310978308, 8.356918966632091922574869118017, 8.562619095071442113234730966049, 9.609539393852220077143673737186, 10.10222911236604819137181073577

Graph of the $Z$-function along the critical line