Properties

Label 4-1066e2-1.1-c1e2-0-15
Degree $4$
Conductor $1136356$
Sign $-1$
Analytic cond. $72.4550$
Root an. cond. $2.91754$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s − 2·5-s + 4·8-s + 3·9-s − 4·10-s + 5·16-s + 6·18-s − 6·20-s − 8·23-s − 7·25-s + 8·31-s + 6·32-s + 9·36-s + 6·37-s − 8·40-s − 10·43-s − 6·45-s − 16·46-s − 13·49-s − 14·50-s − 20·59-s − 16·61-s + 16·62-s + 7·64-s + 12·72-s − 20·73-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s − 0.894·5-s + 1.41·8-s + 9-s − 1.26·10-s + 5/4·16-s + 1.41·18-s − 1.34·20-s − 1.66·23-s − 7/5·25-s + 1.43·31-s + 1.06·32-s + 3/2·36-s + 0.986·37-s − 1.26·40-s − 1.52·43-s − 0.894·45-s − 2.35·46-s − 1.85·49-s − 1.97·50-s − 2.60·59-s − 2.04·61-s + 2.03·62-s + 7/8·64-s + 1.41·72-s − 2.34·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1136356 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1136356 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1136356\)    =    \(2^{2} \cdot 13^{2} \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(72.4550\)
Root analytic conductor: \(2.91754\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1136356,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
41$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71485529334377221111399412284, −7.45985560667588965978165906144, −6.80116983878343159848372363275, −6.45868559488600254043933447314, −5.88908450915949561478136129218, −5.83114250852602916241903112470, −4.80012562663540654491464900636, −4.61153453491182141362175201622, −4.21162542836274046123911200331, −3.86264742523296281671271360599, −3.15669098708687979410735548008, −2.87059053260489669092667348906, −1.80351905056271788024052363940, −1.56586460176306848952281318976, 0, 1.56586460176306848952281318976, 1.80351905056271788024052363940, 2.87059053260489669092667348906, 3.15669098708687979410735548008, 3.86264742523296281671271360599, 4.21162542836274046123911200331, 4.61153453491182141362175201622, 4.80012562663540654491464900636, 5.83114250852602916241903112470, 5.88908450915949561478136129218, 6.45868559488600254043933447314, 6.80116983878343159848372363275, 7.45985560667588965978165906144, 7.71485529334377221111399412284

Graph of the $Z$-function along the critical line