Properties

Label 4-209088-1.1-c1e2-0-26
Degree $4$
Conductor $209088$
Sign $1$
Analytic cond. $13.3316$
Root an. cond. $1.91082$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 4·11-s + 4·17-s − 6·25-s − 27-s + 12·29-s + 16·31-s − 4·33-s + 12·37-s − 12·41-s − 14·49-s − 4·51-s − 8·67-s + 6·75-s + 81-s − 8·83-s − 12·87-s − 16·93-s + 4·97-s + 4·99-s − 36·101-s + 32·103-s − 24·107-s − 12·111-s + 5·121-s + 12·123-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 1.20·11-s + 0.970·17-s − 6/5·25-s − 0.192·27-s + 2.22·29-s + 2.87·31-s − 0.696·33-s + 1.97·37-s − 1.87·41-s − 2·49-s − 0.560·51-s − 0.977·67-s + 0.692·75-s + 1/9·81-s − 0.878·83-s − 1.28·87-s − 1.65·93-s + 0.406·97-s + 0.402·99-s − 3.58·101-s + 3.15·103-s − 2.32·107-s − 1.13·111-s + 5/11·121-s + 1.08·123-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209088 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209088 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(209088\)    =    \(2^{6} \cdot 3^{3} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(13.3316\)
Root analytic conductor: \(1.91082\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 209088,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.619117076\)
\(L(\frac12)\) \(\approx\) \(1.619117076\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.166783448349530625953262482149, −8.412059248281827571082850459164, −8.098990694093691505068092710868, −7.83654723068629114933839597949, −6.92796334648786182474479663711, −6.42897107072744719896577758454, −6.40725479078387541676599821855, −5.70681982833013824339552087978, −5.05736853539339825666279063330, −4.38461660538881471089251752313, −4.25303028692796488061253338187, −3.21029387756548432515894957212, −2.80691305312846013255691010566, −1.61011393533291281462985460586, −0.918192672118257559483050015003, 0.918192672118257559483050015003, 1.61011393533291281462985460586, 2.80691305312846013255691010566, 3.21029387756548432515894957212, 4.25303028692796488061253338187, 4.38461660538881471089251752313, 5.05736853539339825666279063330, 5.70681982833013824339552087978, 6.40725479078387541676599821855, 6.42897107072744719896577758454, 6.92796334648786182474479663711, 7.83654723068629114933839597949, 8.098990694093691505068092710868, 8.412059248281827571082850459164, 9.166783448349530625953262482149

Graph of the $Z$-function along the critical line