Properties

Label 4-160083-1.1-c1e2-0-1
Degree $4$
Conductor $160083$
Sign $1$
Analytic cond. $10.2070$
Root an. cond. $1.78741$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s − 4-s + 2·6-s − 8·8-s + 9-s − 4·11-s − 12-s − 7·16-s + 12·17-s + 2·18-s − 8·22-s − 8·24-s − 6·25-s + 27-s + 4·29-s + 14·32-s − 4·33-s + 24·34-s − 36-s + 12·37-s − 4·41-s + 4·44-s − 7·48-s + 49-s − 12·50-s + 12·51-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s − 1/2·4-s + 0.816·6-s − 2.82·8-s + 1/3·9-s − 1.20·11-s − 0.288·12-s − 7/4·16-s + 2.91·17-s + 0.471·18-s − 1.70·22-s − 1.63·24-s − 6/5·25-s + 0.192·27-s + 0.742·29-s + 2.47·32-s − 0.696·33-s + 4.11·34-s − 1/6·36-s + 1.97·37-s − 0.624·41-s + 0.603·44-s − 1.01·48-s + 1/7·49-s − 1.69·50-s + 1.68·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160083 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160083 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(160083\)    =    \(3^{3} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(10.2070\)
Root analytic conductor: \(1.78741\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 160083,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.542844193\)
\(L(\frac12)\) \(\approx\) \(2.542844193\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 + 4 T + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.457705101580370517739336150901, −8.699165629902587420835899742101, −8.166185648107227108757068218850, −7.81295430367747747098376616892, −7.59860530511322577039011534740, −6.50104795223760620212837147128, −5.94607665445287604157300008429, −5.62767376699147437191457045340, −5.02709416296405066539370067618, −4.79135217072233780435269822604, −3.91805277407899456693617223448, −3.56599684396412385637222444746, −3.05422074105458389777226041971, −2.43470322830479280229086031798, −0.860569456173605054070248949719, 0.860569456173605054070248949719, 2.43470322830479280229086031798, 3.05422074105458389777226041971, 3.56599684396412385637222444746, 3.91805277407899456693617223448, 4.79135217072233780435269822604, 5.02709416296405066539370067618, 5.62767376699147437191457045340, 5.94607665445287604157300008429, 6.50104795223760620212837147128, 7.59860530511322577039011534740, 7.81295430367747747098376616892, 8.166185648107227108757068218850, 8.699165629902587420835899742101, 9.457705101580370517739336150901

Graph of the $Z$-function along the critical line