Properties

Label 4-308e2-1.1-c1e2-0-2
Degree $4$
Conductor $94864$
Sign $-1$
Analytic cond. $6.04861$
Root an. cond. $1.56824$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 2·4-s + 4·6-s − 2·7-s − 3·9-s − 4·12-s + 4·14-s − 4·16-s + 6·18-s + 4·21-s − 9·25-s + 14·27-s − 4·28-s + 14·31-s + 8·32-s − 6·36-s + 6·37-s − 8·42-s + 16·47-s + 8·48-s − 3·49-s + 18·50-s − 12·53-s − 28·54-s + 10·59-s − 28·62-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 4-s + 1.63·6-s − 0.755·7-s − 9-s − 1.15·12-s + 1.06·14-s − 16-s + 1.41·18-s + 0.872·21-s − 9/5·25-s + 2.69·27-s − 0.755·28-s + 2.51·31-s + 1.41·32-s − 36-s + 0.986·37-s − 1.23·42-s + 2.33·47-s + 1.15·48-s − 3/7·49-s + 2.54·50-s − 1.64·53-s − 3.81·54-s + 1.30·59-s − 3.55·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94864 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(94864\)    =    \(2^{4} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(6.04861\)
Root analytic conductor: \(1.56824\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 94864,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.490415131274113451268545814290, −8.719810569642884578389491013532, −8.603539619290756001226038948684, −7.87989145823484455720674220186, −7.59753326202792059542705479631, −6.69785642750182140490053057916, −6.36261389471308870138602900888, −5.96253635220307759773371824019, −5.41592840817145656472425824771, −4.67360648409355241573689732264, −4.01118939616306336398601307633, −2.92516350065322057627024861621, −2.40668113522951484990555404309, −0.979033992832471368219893964268, 0, 0.979033992832471368219893964268, 2.40668113522951484990555404309, 2.92516350065322057627024861621, 4.01118939616306336398601307633, 4.67360648409355241573689732264, 5.41592840817145656472425824771, 5.96253635220307759773371824019, 6.36261389471308870138602900888, 6.69785642750182140490053057916, 7.59753326202792059542705479631, 7.87989145823484455720674220186, 8.603539619290756001226038948684, 8.719810569642884578389491013532, 9.490415131274113451268545814290

Graph of the $Z$-function along the critical line