Properties

Label 4-338688-1.1-c1e2-0-82
Degree $4$
Conductor $338688$
Sign $-1$
Analytic cond. $21.5950$
Root an. cond. $2.15570$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 8·19-s + 12·23-s − 10·25-s + 27-s − 12·29-s − 8·43-s − 24·47-s + 49-s + 12·53-s − 8·57-s + 16·67-s + 12·69-s − 12·71-s − 20·73-s − 10·75-s + 81-s − 12·87-s − 20·97-s + 24·101-s + 14·121-s + 127-s − 8·129-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.83·19-s + 2.50·23-s − 2·25-s + 0.192·27-s − 2.22·29-s − 1.21·43-s − 3.50·47-s + 1/7·49-s + 1.64·53-s − 1.05·57-s + 1.95·67-s + 1.44·69-s − 1.42·71-s − 2.34·73-s − 1.15·75-s + 1/9·81-s − 1.28·87-s − 2.03·97-s + 2.38·101-s + 1.27·121-s + 0.0887·127-s − 0.704·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(338688\)    =    \(2^{8} \cdot 3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(21.5950\)
Root analytic conductor: \(2.15570\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 338688,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.353128748295719499474283851341, −8.300043091642042619777544931378, −7.61029397060529576114922058501, −6.99345965309954841855438264197, −6.93446262615281462668117301613, −6.11056271857714724112691707067, −5.74578744061641052444639897263, −5.03121360889898514265616765984, −4.63917458628061830491997962672, −3.89806512783406200646548904839, −3.53462971911322619523210724383, −2.86774228706863151676919072059, −2.04734454071268201559695039191, −1.58867103529813382887688476545, 0, 1.58867103529813382887688476545, 2.04734454071268201559695039191, 2.86774228706863151676919072059, 3.53462971911322619523210724383, 3.89806512783406200646548904839, 4.63917458628061830491997962672, 5.03121360889898514265616765984, 5.74578744061641052444639897263, 6.11056271857714724112691707067, 6.93446262615281462668117301613, 6.99345965309954841855438264197, 7.61029397060529576114922058501, 8.300043091642042619777544931378, 8.353128748295719499474283851341

Graph of the $Z$-function along the critical line