Properties

Label 4-826875-1.1-c1e2-0-3
Degree $4$
Conductor $826875$
Sign $1$
Analytic cond. $52.7222$
Root an. cond. $2.69462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·4-s + 9-s + 3·12-s + 5·16-s + 4·17-s − 27-s − 3·36-s + 20·37-s − 20·41-s − 8·43-s + 16·47-s − 5·48-s − 7·49-s − 4·51-s + 8·59-s − 3·64-s − 24·67-s − 12·68-s + 81-s + 24·83-s + 12·89-s − 12·101-s + 3·108-s + 28·109-s − 20·111-s − 6·121-s + ⋯
L(s)  = 1  − 0.577·3-s − 3/2·4-s + 1/3·9-s + 0.866·12-s + 5/4·16-s + 0.970·17-s − 0.192·27-s − 1/2·36-s + 3.28·37-s − 3.12·41-s − 1.21·43-s + 2.33·47-s − 0.721·48-s − 49-s − 0.560·51-s + 1.04·59-s − 3/8·64-s − 2.93·67-s − 1.45·68-s + 1/9·81-s + 2.63·83-s + 1.27·89-s − 1.19·101-s + 0.288·108-s + 2.68·109-s − 1.89·111-s − 0.545·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 826875 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 826875 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(826875\)    =    \(3^{3} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(52.7222\)
Root analytic conductor: \(2.69462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 826875,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8896269351\)
\(L(\frac12)\) \(\approx\) \(0.8896269351\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
5 \( 1 \)
7$C_2$ \( 1 + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.455181921164028207665051683361, −7.78056789512660315702386216522, −7.46261028773657489832215471574, −6.92482379445403167319259433221, −6.20681526904542088835730053039, −6.00448844798074713207333092038, −5.44640444640032659769086760535, −4.79896242020124990959414772446, −4.79492945983632365647604814265, −4.11644977935212568952932430273, −3.55714635244582915245852508954, −3.13361812930802426100944548657, −2.20286953987450620546650146772, −1.27025970316177507740293768624, −0.53965130087831198857502799684, 0.53965130087831198857502799684, 1.27025970316177507740293768624, 2.20286953987450620546650146772, 3.13361812930802426100944548657, 3.55714635244582915245852508954, 4.11644977935212568952932430273, 4.79492945983632365647604814265, 4.79896242020124990959414772446, 5.44640444640032659769086760535, 6.00448844798074713207333092038, 6.20681526904542088835730053039, 6.92482379445403167319259433221, 7.46261028773657489832215471574, 7.78056789512660315702386216522, 8.455181921164028207665051683361

Graph of the $Z$-function along the critical line