Properties

Label 4-408e2-1.1-c1e2-0-47
Degree $4$
Conductor $166464$
Sign $-1$
Analytic cond. $10.6138$
Root an. cond. $1.80496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s − 4·13-s + 2·17-s − 8·19-s − 6·25-s + 8·43-s − 14·49-s − 4·53-s + 8·59-s − 8·67-s + 81-s − 8·83-s − 12·89-s − 36·101-s + 32·103-s − 4·117-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 2·153-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 1/3·9-s − 1.10·13-s + 0.485·17-s − 1.83·19-s − 6/5·25-s + 1.21·43-s − 2·49-s − 0.549·53-s + 1.04·59-s − 0.977·67-s + 1/9·81-s − 0.878·83-s − 1.27·89-s − 3.58·101-s + 3.15·103-s − 0.369·117-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.161·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(166464\)    =    \(2^{6} \cdot 3^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(10.6138\)
Root analytic conductor: \(1.80496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 166464,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
17$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.063016264776882028484939879353, −8.355230373829598766062247754786, −8.098990694093691505068092710868, −7.48026403891189149604247587328, −7.14328906397907053732568751561, −6.42897107072744719896577758454, −6.12988314631940998265391004819, −5.43016342758798685600037411651, −4.89441641834110651309625753413, −4.25303028692796488061253338187, −3.90806135734356722472911536103, −2.96100787019000394786081708512, −2.31953951885724301169050983275, −1.57698730169915032251498272270, 0, 1.57698730169915032251498272270, 2.31953951885724301169050983275, 2.96100787019000394786081708512, 3.90806135734356722472911536103, 4.25303028692796488061253338187, 4.89441641834110651309625753413, 5.43016342758798685600037411651, 6.12988314631940998265391004819, 6.42897107072744719896577758454, 7.14328906397907053732568751561, 7.48026403891189149604247587328, 8.098990694093691505068092710868, 8.355230373829598766062247754786, 9.063016264776882028484939879353

Graph of the $Z$-function along the critical line