Properties

Label 4-395136-1.1-c1e2-0-38
Degree $4$
Conductor $395136$
Sign $-1$
Analytic cond. $25.1942$
Root an. cond. $2.24039$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s + 7-s − 8-s + 9-s + 2·12-s + 8·13-s − 14-s + 16-s − 12·17-s − 18-s − 4·19-s + 2·21-s − 2·24-s − 10·25-s − 8·26-s − 4·27-s + 28-s − 12·29-s − 32-s + 12·34-s + 36-s + 4·38-s + 16·39-s − 12·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.577·12-s + 2.21·13-s − 0.267·14-s + 1/4·16-s − 2.91·17-s − 0.235·18-s − 0.917·19-s + 0.436·21-s − 0.408·24-s − 2·25-s − 1.56·26-s − 0.769·27-s + 0.188·28-s − 2.22·29-s − 0.176·32-s + 2.05·34-s + 1/6·36-s + 0.648·38-s + 2.56·39-s − 1.87·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 395136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 395136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(395136\)    =    \(2^{7} \cdot 3^{2} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(25.1942\)
Root analytic conductor: \(2.24039\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 395136,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
7$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.624667079434487291694904422005, −8.156759517304686892380266927456, −7.55563465371540871894331307120, −7.34808391035356365236166309157, −6.58338612370338623267809377565, −6.12986038892916091786195943044, −5.89372115656638311788103577429, −5.10276803747253805923263658121, −4.14318817559479393176326791421, −3.87985229263682105648190826671, −3.59991440544977347073267949607, −2.31147598100149017773134041140, −2.25140513775369021989127014661, −1.55194931839012879683964780078, 0, 1.55194931839012879683964780078, 2.25140513775369021989127014661, 2.31147598100149017773134041140, 3.59991440544977347073267949607, 3.87985229263682105648190826671, 4.14318817559479393176326791421, 5.10276803747253805923263658121, 5.89372115656638311788103577429, 6.12986038892916091786195943044, 6.58338612370338623267809377565, 7.34808391035356365236166309157, 7.55563465371540871894331307120, 8.156759517304686892380266927456, 8.624667079434487291694904422005

Graph of the $Z$-function along the critical line