Properties

Label 4-14112-1.1-c1e2-0-9
Degree $4$
Conductor $14112$
Sign $1$
Analytic cond. $0.899793$
Root an. cond. $0.973947$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s + 2·6-s + 8-s + 9-s + 2·12-s − 8·13-s + 16-s + 18-s + 2·24-s − 10·25-s − 8·26-s − 4·27-s + 32-s + 36-s + 4·37-s − 16·39-s + 24·47-s + 2·48-s + 49-s − 10·50-s − 8·52-s − 4·54-s + 12·59-s + 16·61-s + 64-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.816·6-s + 0.353·8-s + 1/3·9-s + 0.577·12-s − 2.21·13-s + 1/4·16-s + 0.235·18-s + 0.408·24-s − 2·25-s − 1.56·26-s − 0.769·27-s + 0.176·32-s + 1/6·36-s + 0.657·37-s − 2.56·39-s + 3.50·47-s + 0.288·48-s + 1/7·49-s − 1.41·50-s − 1.10·52-s − 0.544·54-s + 1.56·59-s + 2.04·61-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14112 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14112 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14112\)    =    \(2^{5} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.899793\)
Root analytic conductor: \(0.973947\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14112,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.028724583\)
\(L(\frac12)\) \(\approx\) \(2.028724583\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.52629384186915375545261187858, −10.47027853370113893616936981615, −10.11465006559287644470603673937, −9.392494157732895222790142944171, −9.207333736191082013174831123730, −8.182643116839158569055135937831, −7.80365099617056766338064266882, −7.29668061464756137953129595214, −6.71310127772875365703449938682, −5.62168100149868099368912779374, −5.31921059379060528260176389250, −4.19102102405251164216473944262, −3.82418745638366191622617161116, −2.48514181668809031419660323366, −2.39101862347891857041372548490, 2.39101862347891857041372548490, 2.48514181668809031419660323366, 3.82418745638366191622617161116, 4.19102102405251164216473944262, 5.31921059379060528260176389250, 5.62168100149868099368912779374, 6.71310127772875365703449938682, 7.29668061464756137953129595214, 7.80365099617056766338064266882, 8.182643116839158569055135937831, 9.207333736191082013174831123730, 9.392494157732895222790142944171, 10.11465006559287644470603673937, 10.47027853370113893616936981615, 11.52629384186915375545261187858

Graph of the $Z$-function along the critical line