Properties

Label 4-6768-1.1-c1e2-0-0
Degree $4$
Conductor $6768$
Sign $-1$
Analytic cond. $0.431533$
Root an. cond. $0.810501$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 4-s + 2·6-s + 3·8-s + 9-s − 2·11-s + 2·12-s − 6·13-s − 16-s − 18-s + 2·22-s − 8·23-s − 6·24-s − 6·25-s + 6·26-s + 4·27-s − 5·32-s + 4·33-s − 36-s − 4·37-s + 12·39-s + 2·44-s + 8·46-s − 11·47-s + 2·48-s − 2·49-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.816·6-s + 1.06·8-s + 1/3·9-s − 0.603·11-s + 0.577·12-s − 1.66·13-s − 1/4·16-s − 0.235·18-s + 0.426·22-s − 1.66·23-s − 1.22·24-s − 6/5·25-s + 1.17·26-s + 0.769·27-s − 0.883·32-s + 0.696·33-s − 1/6·36-s − 0.657·37-s + 1.92·39-s + 0.301·44-s + 1.17·46-s − 1.60·47-s + 0.288·48-s − 2/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6768 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6768 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6768\)    =    \(2^{4} \cdot 3^{2} \cdot 47\)
Sign: $-1$
Analytic conductor: \(0.431533\)
Root analytic conductor: \(0.810501\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 6768,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
47$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 12 T + p T^{2} ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.70688777284638673979565451134, −11.03739671080096490885210313851, −10.21452845382174683769874300557, −10.03117785392807924121407255636, −9.615382857462666609097306020184, −8.642154117411816364534592559742, −8.082628173026923360397743359668, −7.53156244480756256987795816140, −6.83984285015980646588858775247, −5.95849882512141861238903031446, −5.24441889789184721049990949223, −4.79790534272746541152460548441, −3.82226744501162954417248868453, −2.19723254370844623474510707354, 0, 2.19723254370844623474510707354, 3.82226744501162954417248868453, 4.79790534272746541152460548441, 5.24441889789184721049990949223, 5.95849882512141861238903031446, 6.83984285015980646588858775247, 7.53156244480756256987795816140, 8.082628173026923360397743359668, 8.642154117411816364534592559742, 9.615382857462666609097306020184, 10.03117785392807924121407255636, 10.21452845382174683769874300557, 11.03739671080096490885210313851, 11.70688777284638673979565451134

Graph of the $Z$-function along the critical line