Properties

Label 4-311904-1.1-c1e2-0-0
Degree $4$
Conductor $311904$
Sign $1$
Analytic cond. $19.8872$
Root an. cond. $2.11175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s + 9-s − 8·11-s − 12-s + 4·13-s + 16-s + 18-s − 8·22-s − 8·23-s − 24-s − 6·25-s + 4·26-s − 27-s + 32-s + 8·33-s + 36-s + 20·37-s − 4·39-s − 8·44-s − 8·46-s − 8·47-s − 48-s − 14·49-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 2.41·11-s − 0.288·12-s + 1.10·13-s + 1/4·16-s + 0.235·18-s − 1.70·22-s − 1.66·23-s − 0.204·24-s − 6/5·25-s + 0.784·26-s − 0.192·27-s + 0.176·32-s + 1.39·33-s + 1/6·36-s + 3.28·37-s − 0.640·39-s − 1.20·44-s − 1.17·46-s − 1.16·47-s − 0.144·48-s − 2·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(311904\)    =    \(2^{5} \cdot 3^{3} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(19.8872\)
Root analytic conductor: \(2.11175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 311904,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.778956734\)
\(L(\frac12)\) \(\approx\) \(1.778956734\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$ \( 1 + T \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.501995439933935386642992901059, −8.057224083383321383561004935430, −7.987570621007900466899230715503, −7.54188937600423423101808663065, −6.59739773494044819386161896201, −6.46925034993373182658971924423, −5.66755609194805589043695166783, −5.60441811878021212455097225817, −5.02382748416547556621669886282, −4.39790054298019034493919320980, −3.86301997176052042051145556459, −3.33052988139656335920774502455, −2.33973473634575001863443152397, −2.15606001082909168122252072981, −0.69408070740984200675842868720, 0.69408070740984200675842868720, 2.15606001082909168122252072981, 2.33973473634575001863443152397, 3.33052988139656335920774502455, 3.86301997176052042051145556459, 4.39790054298019034493919320980, 5.02382748416547556621669886282, 5.60441811878021212455097225817, 5.66755609194805589043695166783, 6.46925034993373182658971924423, 6.59739773494044819386161896201, 7.54188937600423423101808663065, 7.987570621007900466899230715503, 8.057224083383321383561004935430, 8.501995439933935386642992901059

Graph of the $Z$-function along the critical line