Properties

Label 4-27648-1.1-c1e2-0-3
Degree $4$
Conductor $27648$
Sign $1$
Analytic cond. $1.76286$
Root an. cond. $1.15227$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 8·11-s − 4·13-s − 6·25-s + 27-s + 8·33-s − 4·37-s − 4·39-s + 16·47-s + 2·49-s − 8·59-s + 12·61-s − 32·71-s − 12·73-s − 6·75-s + 81-s + 24·83-s − 28·97-s + 8·99-s − 8·107-s + 28·109-s − 4·111-s − 4·117-s + 26·121-s + 127-s + 131-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 2.41·11-s − 1.10·13-s − 6/5·25-s + 0.192·27-s + 1.39·33-s − 0.657·37-s − 0.640·39-s + 2.33·47-s + 2/7·49-s − 1.04·59-s + 1.53·61-s − 3.79·71-s − 1.40·73-s − 0.692·75-s + 1/9·81-s + 2.63·83-s − 2.84·97-s + 0.804·99-s − 0.773·107-s + 2.68·109-s − 0.379·111-s − 0.369·117-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27648 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27648 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(27648\)    =    \(2^{10} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(1.76286\)
Root analytic conductor: \(1.15227\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 27648,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.584508961\)
\(L(\frac12)\) \(\approx\) \(1.584508961\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.44913304188171401892835914004, −9.937852275620133476013119550490, −9.488699237661810053920246470193, −8.839886292016704738441339481672, −8.839451555498636571243071250626, −7.81343717072417778826484889358, −7.28654230418818125978122396710, −6.91469103626909406223255043804, −6.15267013015603292112906972931, −5.64125009969007529682624024748, −4.57894092460876565195206012945, −4.10625798014363516984369255368, −3.48999177685615809985045793307, −2.44821729992400328434125228202, −1.46933061420707130494872098274, 1.46933061420707130494872098274, 2.44821729992400328434125228202, 3.48999177685615809985045793307, 4.10625798014363516984369255368, 4.57894092460876565195206012945, 5.64125009969007529682624024748, 6.15267013015603292112906972931, 6.91469103626909406223255043804, 7.28654230418818125978122396710, 7.81343717072417778826484889358, 8.839451555498636571243071250626, 8.839886292016704738441339481672, 9.488699237661810053920246470193, 9.937852275620133476013119550490, 10.44913304188171401892835914004

Graph of the $Z$-function along the critical line