Properties

Label 4-270000-1.1-c1e2-0-0
Degree $4$
Conductor $270000$
Sign $1$
Analytic cond. $17.2154$
Root an. cond. $2.03694$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·4-s − 2·6-s + 9-s − 4·11-s − 2·12-s − 2·13-s − 4·16-s + 2·18-s − 8·22-s + 12·23-s − 4·26-s − 27-s − 8·32-s + 4·33-s + 2·36-s − 4·37-s + 2·39-s − 8·44-s + 24·46-s + 4·47-s + 4·48-s − 5·49-s − 4·52-s − 2·54-s + 20·59-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 4-s − 0.816·6-s + 1/3·9-s − 1.20·11-s − 0.577·12-s − 0.554·13-s − 16-s + 0.471·18-s − 1.70·22-s + 2.50·23-s − 0.784·26-s − 0.192·27-s − 1.41·32-s + 0.696·33-s + 1/3·36-s − 0.657·37-s + 0.320·39-s − 1.20·44-s + 3.53·46-s + 0.583·47-s + 0.577·48-s − 5/7·49-s − 0.554·52-s − 0.272·54-s + 2.60·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(270000\)    =    \(2^{4} \cdot 3^{3} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(17.2154\)
Root analytic conductor: \(2.03694\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 270000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.517770956\)
\(L(\frac12)\) \(\approx\) \(2.517770956\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
3$C_1$ \( 1 + T \)
5 \( 1 \)
good7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 17 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.052471577485418050377330134019, −8.105315307318281005924759006469, −8.102126663118456650752904190012, −6.99182605075727565742724929802, −6.96660723932071234204269144809, −6.59754059703926529506773066348, −5.60694328736998842121660037613, −5.45352832460903594958062456545, −4.92213034669592094010306499374, −4.78985931636144963960080177818, −3.78545707329788062312381068333, −3.48045838663060024632885892599, −2.58914107657822994764341775063, −2.27079729708413704097834802658, −0.77482341387654784778243330666, 0.77482341387654784778243330666, 2.27079729708413704097834802658, 2.58914107657822994764341775063, 3.48045838663060024632885892599, 3.78545707329788062312381068333, 4.78985931636144963960080177818, 4.92213034669592094010306499374, 5.45352832460903594958062456545, 5.60694328736998842121660037613, 6.59754059703926529506773066348, 6.96660723932071234204269144809, 6.99182605075727565742724929802, 8.102126663118456650752904190012, 8.105315307318281005924759006469, 9.052471577485418050377330134019

Graph of the $Z$-function along the critical line