Properties

Label 4-209088-1.1-c1e2-0-44
Degree $4$
Conductor $209088$
Sign $-1$
Analytic cond. $13.3316$
Root an. cond. $1.91082$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 2·11-s − 4·13-s − 6·25-s − 27-s + 2·33-s + 20·37-s + 4·39-s + 16·47-s − 10·49-s − 24·59-s + 20·61-s − 16·71-s + 12·73-s + 6·75-s + 81-s − 32·83-s − 4·97-s − 2·99-s − 20·109-s − 20·111-s − 4·117-s + 3·121-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 0.603·11-s − 1.10·13-s − 6/5·25-s − 0.192·27-s + 0.348·33-s + 3.28·37-s + 0.640·39-s + 2.33·47-s − 1.42·49-s − 3.12·59-s + 2.56·61-s − 1.89·71-s + 1.40·73-s + 0.692·75-s + 1/9·81-s − 3.51·83-s − 0.406·97-s − 0.201·99-s − 1.91·109-s − 1.89·111-s − 0.369·117-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209088 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209088 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(209088\)    =    \(2^{6} \cdot 3^{3} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(13.3316\)
Root analytic conductor: \(1.91082\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 209088,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
11$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.932199088171823379479580947914, −8.071554028904627902844738284977, −7.956659964685635211800714779949, −7.34087378011120859262644430825, −7.05430755180880074285547369845, −6.20097915233518496322100006686, −5.92948814461081293712003874605, −5.44620559411548300463639810762, −4.75118710346056158176317605927, −4.37492205611691939780872013052, −3.79814948526845934439056144160, −2.71552905653600617964922283600, −2.46483616139600209242493840583, −1.29948084140706303387979501539, 0, 1.29948084140706303387979501539, 2.46483616139600209242493840583, 2.71552905653600617964922283600, 3.79814948526845934439056144160, 4.37492205611691939780872013052, 4.75118710346056158176317605927, 5.44620559411548300463639810762, 5.92948814461081293712003874605, 6.20097915233518496322100006686, 7.05430755180880074285547369845, 7.34087378011120859262644430825, 7.956659964685635211800714779949, 8.071554028904627902844738284977, 8.932199088171823379479580947914

Graph of the $Z$-function along the critical line