Properties

Label 2-983-983.492-c1-0-77
Degree $2$
Conductor $983$
Sign $-0.447 - 0.894i$
Analytic cond. $7.84929$
Root an. cond. $2.80165$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.668 − 1.99i)2-s + (2.16 − 1.21i)3-s + (−1.93 + 1.46i)4-s + (−1.46 − 2.21i)5-s + (−3.87 − 3.50i)6-s + (−1.51 − 3.34i)7-s + (0.745 + 0.511i)8-s + (1.64 − 2.69i)9-s + (−3.43 + 4.40i)10-s + (0.635 − 0.0407i)11-s + (−2.41 + 5.52i)12-s + (3.77 − 4.36i)13-s + (−5.66 + 5.26i)14-s + (−5.85 − 3.00i)15-s + (−0.812 + 2.84i)16-s + (4.47 + 1.97i)17-s + ⋯
L(s)  = 1  + (−0.472 − 1.41i)2-s + (1.24 − 0.701i)3-s + (−0.969 + 0.731i)4-s + (−0.655 − 0.988i)5-s + (−1.58 − 1.43i)6-s + (−0.573 − 1.26i)7-s + (0.263 + 0.180i)8-s + (0.547 − 0.898i)9-s + (−1.08 + 1.39i)10-s + (0.191 − 0.0122i)11-s + (−0.697 + 1.59i)12-s + (1.04 − 1.21i)13-s + (−1.51 + 1.40i)14-s + (−1.51 − 0.775i)15-s + (−0.203 + 0.710i)16-s + (1.08 + 0.479i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 983 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 983 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(983\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(7.84929\)
Root analytic conductor: \(2.80165\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{983} (492, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 983,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.792446 + 1.28187i\)
\(L(\frac12)\) \(\approx\) \(0.792446 + 1.28187i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad983 \( 1 + (-27.6 - 14.7i)T \)
good2 \( 1 + (0.668 + 1.99i)T + (-1.59 + 1.20i)T^{2} \)
3 \( 1 + (-2.16 + 1.21i)T + (1.56 - 2.56i)T^{2} \)
5 \( 1 + (1.46 + 2.21i)T + (-1.94 + 4.60i)T^{2} \)
7 \( 1 + (1.51 + 3.34i)T + (-4.61 + 5.26i)T^{2} \)
11 \( 1 + (-0.635 + 0.0407i)T + (10.9 - 1.40i)T^{2} \)
13 \( 1 + (-3.77 + 4.36i)T + (-1.86 - 12.8i)T^{2} \)
17 \( 1 + (-4.47 - 1.97i)T + (11.4 + 12.5i)T^{2} \)
19 \( 1 + (1.93 - 1.47i)T + (4.98 - 18.3i)T^{2} \)
23 \( 1 + (-0.282 + 2.66i)T + (-22.4 - 4.82i)T^{2} \)
29 \( 1 + (-3.20 - 4.64i)T + (-10.2 + 27.1i)T^{2} \)
31 \( 1 + (1.20 - 1.79i)T + (-11.7 - 28.7i)T^{2} \)
37 \( 1 + (-9.95 - 2.46i)T + (32.7 + 17.2i)T^{2} \)
41 \( 1 + (4.15 - 0.373i)T + (40.3 - 7.30i)T^{2} \)
43 \( 1 + (-2.76 + 3.78i)T + (-13.1 - 40.9i)T^{2} \)
47 \( 1 + (0.834 - 2.78i)T + (-39.2 - 25.8i)T^{2} \)
53 \( 1 + (-5.11 - 4.69i)T + (4.57 + 52.8i)T^{2} \)
59 \( 1 + (4.82 - 0.371i)T + (58.3 - 9.02i)T^{2} \)
61 \( 1 + (2.42 - 2.05i)T + (9.90 - 60.1i)T^{2} \)
67 \( 1 + (10.3 + 8.90i)T + (10.0 + 66.2i)T^{2} \)
71 \( 1 + (1.12 + 0.916i)T + (14.2 + 69.5i)T^{2} \)
73 \( 1 + (-1.77 + 1.26i)T + (23.6 - 69.0i)T^{2} \)
79 \( 1 + (-3.35 - 0.497i)T + (75.6 + 22.9i)T^{2} \)
83 \( 1 + (13.3 + 4.13i)T + (68.4 + 46.9i)T^{2} \)
89 \( 1 + (5.67 - 3.73i)T + (35.1 - 81.7i)T^{2} \)
97 \( 1 + (-12.2 - 0.626i)T + (96.4 + 9.91i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.426505398610510006968227024214, −8.536672771156150241331776599969, −8.201935280203687914321263477156, −7.36572831472029722428117478781, −6.12755963787901595843348874565, −4.36471873122608540310145256149, −3.53740405462163876931985627321, −3.00040605827942087163500076691, −1.40427545397070962777912883249, −0.78116823763261328948720910733, 2.54169799216856918629411490812, 3.32544896044323834150885247861, 4.33775956364091208845391036601, 5.77890940142293932743204546705, 6.44533795625544352009176380648, 7.34482892801035550176652734276, 8.120014869059170679729655227694, 8.830573367122687014732954484330, 9.336695147010912316183773449472, 9.984218484338188480248111668411

Graph of the $Z$-function along the critical line