Properties

Label 4-99e4-1.1-c1e2-0-11
Degree $4$
Conductor $96059601$
Sign $1$
Analytic cond. $6124.84$
Root an. cond. $8.84654$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 4·7-s + 2·13-s − 3·16-s − 4·19-s − 7·25-s + 4·28-s + 16·31-s − 14·37-s − 4·43-s − 2·49-s − 2·52-s + 14·61-s + 7·64-s − 20·67-s + 14·73-s + 4·76-s − 4·79-s − 8·91-s + 4·97-s + 7·100-s + 16·103-s − 22·109-s + 12·112-s − 16·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s − 1.51·7-s + 0.554·13-s − 3/4·16-s − 0.917·19-s − 7/5·25-s + 0.755·28-s + 2.87·31-s − 2.30·37-s − 0.609·43-s − 2/7·49-s − 0.277·52-s + 1.79·61-s + 7/8·64-s − 2.44·67-s + 1.63·73-s + 0.458·76-s − 0.450·79-s − 0.838·91-s + 0.406·97-s + 7/10·100-s + 1.57·103-s − 2.10·109-s + 1.13·112-s − 1.43·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96059601 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96059601 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(96059601\)    =    \(3^{8} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(6124.84\)
Root analytic conductor: \(8.84654\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 96059601,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 151 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47602425196733180808510235490, −6.97628079058080314939730537220, −6.80891826212390314326490246244, −6.35559472718337603287764484755, −6.24562481505812713463926433936, −6.06420997555128303906823363261, −5.27008504006369175030698491509, −5.21904369715254240316449956535, −4.67803989923594633740667786051, −4.36039868496485172908644907565, −3.89884842017188538670384766657, −3.68939238846573103703420248090, −3.27380712296299602714362207289, −2.85719586974089316958048605023, −2.44941844836081933712830884599, −1.99728663955535100055940092563, −1.47452825009956490658778358704, −0.834913515341981323344590190895, 0, 0, 0.834913515341981323344590190895, 1.47452825009956490658778358704, 1.99728663955535100055940092563, 2.44941844836081933712830884599, 2.85719586974089316958048605023, 3.27380712296299602714362207289, 3.68939238846573103703420248090, 3.89884842017188538670384766657, 4.36039868496485172908644907565, 4.67803989923594633740667786051, 5.21904369715254240316449956535, 5.27008504006369175030698491509, 6.06420997555128303906823363261, 6.24562481505812713463926433936, 6.35559472718337603287764484755, 6.80891826212390314326490246244, 6.97628079058080314939730537220, 7.47602425196733180808510235490

Graph of the $Z$-function along the critical line