Properties

Label 6-980e3-1.1-c5e3-0-1
Degree $6$
Conductor $941192000$
Sign $-1$
Analytic cond. $3.88293\times 10^{6}$
Root an. cond. $12.5369$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s − 75·5-s − 206·9-s − 14·11-s + 4·13-s + 450·15-s − 44·17-s − 2.32e3·19-s + 3.67e3·23-s + 3.75e3·25-s + 552·27-s + 4.09e3·29-s − 5.88e3·31-s + 84·33-s + 1.13e4·37-s − 24·39-s − 1.14e4·41-s + 1.85e4·43-s + 1.54e4·45-s − 2.17e4·47-s + 264·51-s + 7.49e3·53-s + 1.05e3·55-s + 1.39e4·57-s − 1.23e4·59-s − 2.71e4·61-s − 300·65-s + ⋯
L(s)  = 1  − 0.384·3-s − 1.34·5-s − 0.847·9-s − 0.0348·11-s + 0.00656·13-s + 0.516·15-s − 0.0369·17-s − 1.47·19-s + 1.44·23-s + 6/5·25-s + 0.145·27-s + 0.903·29-s − 1.10·31-s + 0.0134·33-s + 1.36·37-s − 0.00252·39-s − 1.06·41-s + 1.52·43-s + 1.13·45-s − 1.43·47-s + 0.0142·51-s + 0.366·53-s + 0.0468·55-s + 0.569·57-s − 0.463·59-s − 0.935·61-s − 0.00880·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{3} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{3} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{6} \cdot 5^{3} \cdot 7^{6}\)
Sign: $-1$
Analytic conductor: \(3.88293\times 10^{6}\)
Root analytic conductor: \(12.5369\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 2^{6} \cdot 5^{3} \cdot 7^{6} ,\ ( \ : 5/2, 5/2, 5/2 ),\ -1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + p^{2} T )^{3} \)
7 \( 1 \)
good3$S_4\times C_2$ \( 1 + 2 p T + 242 T^{2} + 712 p T^{3} + 242 p^{5} T^{4} + 2 p^{11} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 + 14 T + 335922 T^{2} + 16946168 T^{3} + 335922 p^{5} T^{4} + 14 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 - 4 T + 688508 T^{2} + 3170390 T^{3} + 688508 p^{5} T^{4} - 4 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 + 44 T + 11856 p^{2} T^{2} - 154171654 T^{3} + 11856 p^{7} T^{4} + 44 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 + 2328 T + 2524317 T^{2} + 99195680 T^{3} + 2524317 p^{5} T^{4} + 2328 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 - 3676 T + 21311145 T^{2} - 45236333032 T^{3} + 21311145 p^{5} T^{4} - 3676 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 - 4092 T + 44125116 T^{2} - 150282374694 T^{3} + 44125116 p^{5} T^{4} - 4092 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 5888 T + 1430819 p T^{2} + 125334777344 T^{3} + 1430819 p^{6} T^{4} + 5888 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 - 11378 T + 249081611 T^{2} - 1625278009292 T^{3} + 249081611 p^{5} T^{4} - 11378 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 + 11450 T + 303190107 T^{2} + 2174527049300 T^{3} + 303190107 p^{5} T^{4} + 11450 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 - 18544 T + 427949605 T^{2} - 4701687457808 T^{3} + 427949605 p^{5} T^{4} - 18544 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 21754 T + 817528902 T^{2} + 10151999940700 T^{3} + 817528902 p^{5} T^{4} + 21754 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 - 7494 T + 1092946479 T^{2} - 5524002791484 T^{3} + 1092946479 p^{5} T^{4} - 7494 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 12388 T + 210415569 T^{2} - 23463075596456 T^{3} + 210415569 p^{5} T^{4} + 12388 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 + 27182 T + 2359167815 T^{2} + 46085588664044 T^{3} + 2359167815 p^{5} T^{4} + 27182 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 + 7676 T + 23794675 p T^{2} + 5556434935144 T^{3} + 23794675 p^{6} T^{4} + 7676 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 - 81992 T + 4847939253 T^{2} - 182439241075184 T^{3} + 4847939253 p^{5} T^{4} - 81992 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 230 T - 689976937 T^{2} + 11997243597140 T^{3} - 689976937 p^{5} T^{4} + 230 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 + 15926 T + 766889110 T^{2} - 176082125424572 T^{3} + 766889110 p^{5} T^{4} + 15926 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 - 86100 T + 12298902585 T^{2} - 638013375785400 T^{3} + 12298902585 p^{5} T^{4} - 86100 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 - 95710 T + 14224701483 T^{2} - 763443390521980 T^{3} + 14224701483 p^{5} T^{4} - 95710 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 176188 T + 27195006632 T^{2} - 2984320016065750 T^{3} + 27195006632 p^{5} T^{4} - 176188 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.725747667662136187707887664478, −8.086004655283926541678364227659, −7.957075086101113429886766829394, −7.929563584263492156113905717150, −7.52045329416865492162302122355, −7.22970310481659312038047297820, −6.77052860418021295824087497195, −6.40271804007818659346966163826, −6.38956941735003558885943973471, −6.31266290429926658889275800884, −5.38067458857025593860079439259, −5.32080586661175391249602429022, −5.30415547691790737388658472838, −4.58909784930268988900979903297, −4.50783881778751284723396064936, −4.15936849695453949925996211234, −3.76102399815077905283025054422, −3.35477683536756640620879077011, −3.31546586434693942001550798589, −2.58120375359014087902261453227, −2.51943334996550879630638543176, −2.16968488520114866900650044002, −1.42669487291980306787490487317, −1.07938155098226090650754383194, −0.864384388988484714526849933383, 0, 0, 0, 0.864384388988484714526849933383, 1.07938155098226090650754383194, 1.42669487291980306787490487317, 2.16968488520114866900650044002, 2.51943334996550879630638543176, 2.58120375359014087902261453227, 3.31546586434693942001550798589, 3.35477683536756640620879077011, 3.76102399815077905283025054422, 4.15936849695453949925996211234, 4.50783881778751284723396064936, 4.58909784930268988900979903297, 5.30415547691790737388658472838, 5.32080586661175391249602429022, 5.38067458857025593860079439259, 6.31266290429926658889275800884, 6.38956941735003558885943973471, 6.40271804007818659346966163826, 6.77052860418021295824087497195, 7.22970310481659312038047297820, 7.52045329416865492162302122355, 7.929563584263492156113905717150, 7.957075086101113429886766829394, 8.086004655283926541678364227659, 8.725747667662136187707887664478

Graph of the $Z$-function along the critical line