Properties

Label 8-980e4-1.1-c1e4-0-17
Degree $8$
Conductor $922368160000$
Sign $1$
Analytic cond. $3749.83$
Root an. cond. $2.79738$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 6·9-s + 8·19-s + 5·25-s − 8·29-s + 16·31-s + 24·41-s + 12·45-s − 8·59-s + 12·61-s + 48·71-s − 8·79-s + 9·81-s − 20·89-s − 16·95-s + 36·101-s + 28·109-s + 22·121-s − 22·125-s + 127-s + 131-s + 137-s + 139-s + 16·145-s + 149-s + 151-s − 32·155-s + ⋯
L(s)  = 1  − 0.894·5-s − 2·9-s + 1.83·19-s + 25-s − 1.48·29-s + 2.87·31-s + 3.74·41-s + 1.78·45-s − 1.04·59-s + 1.53·61-s + 5.69·71-s − 0.900·79-s + 81-s − 2.11·89-s − 1.64·95-s + 3.58·101-s + 2.68·109-s + 2·121-s − 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.32·145-s + 0.0819·149-s + 0.0813·151-s − 2.57·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(3749.83\)
Root analytic conductor: \(2.79738\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.634451288\)
\(L(\frac12)\) \(\approx\) \(2.634451288\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2^2$ \( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good3$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
17$C_2^3$ \( 1 + 18 T^{2} + 35 T^{4} + 18 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - 4 T - 3 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 18 T^{2} - 205 T^{4} - 18 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^3$ \( 1 + 10 T^{2} - 1269 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 30 T^{2} - 1309 T^{4} + 30 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 4 T - 43 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 6 T - 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 70 T^{2} + 411 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
73$C_2^3$ \( 1 + 130 T^{2} + 11571 T^{4} + 130 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 + 17 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{4} \)
89$C_2^2$ \( ( 1 + 10 T + 11 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.27448955108484871978425618953, −6.77258980269466721507198350982, −6.76584509139964317939262838027, −6.63730428256926712623220216119, −6.14930804088332026789838022708, −5.89815279966537972382874222445, −5.84734254600871668037574197444, −5.70928072489352256982493990613, −5.29699790414913958053695680384, −5.07194342243141494535938170370, −4.96998853271478763571430683095, −4.53978395344829857762746738944, −4.41524035427151186101550105026, −4.06095558429288036321659118680, −3.77414100600725362662326140358, −3.47530894235330696219250094753, −3.37635752384361742849959081639, −2.78372263240156959442536848385, −2.78359223102205622521061339146, −2.70595075234222469454391472969, −2.05542799489296728166079430194, −1.93231285190119175792442378616, −0.962554427255944045818718986399, −0.845848652453346445710810900749, −0.55861095119285999194782798143, 0.55861095119285999194782798143, 0.845848652453346445710810900749, 0.962554427255944045818718986399, 1.93231285190119175792442378616, 2.05542799489296728166079430194, 2.70595075234222469454391472969, 2.78359223102205622521061339146, 2.78372263240156959442536848385, 3.37635752384361742849959081639, 3.47530894235330696219250094753, 3.77414100600725362662326140358, 4.06095558429288036321659118680, 4.41524035427151186101550105026, 4.53978395344829857762746738944, 4.96998853271478763571430683095, 5.07194342243141494535938170370, 5.29699790414913958053695680384, 5.70928072489352256982493990613, 5.84734254600871668037574197444, 5.89815279966537972382874222445, 6.14930804088332026789838022708, 6.63730428256926712623220216119, 6.76584509139964317939262838027, 6.77258980269466721507198350982, 7.27448955108484871978425618953

Graph of the $Z$-function along the critical line