Properties

Label 2-98-49.25-c1-0-1
Degree $2$
Conductor $98$
Sign $0.992 - 0.122i$
Analytic cond. $0.782533$
Root an. cond. $0.884609$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.955 − 0.294i)2-s + (0.427 + 1.08i)3-s + (0.826 − 0.563i)4-s + (−0.0821 − 0.0123i)5-s + (0.729 + 0.914i)6-s + (−2.45 + 0.985i)7-s + (0.623 − 0.781i)8-s + (1.19 − 1.11i)9-s + (−0.0821 + 0.0123i)10-s + (−2.81 − 2.61i)11-s + (0.966 + 0.658i)12-s + (−0.384 + 1.68i)13-s + (−2.05 + 1.66i)14-s + (−0.0216 − 0.0947i)15-s + (0.365 − 0.930i)16-s + (−0.107 + 1.43i)17-s + ⋯
L(s)  = 1  + (0.675 − 0.208i)2-s + (0.246 + 0.628i)3-s + (0.413 − 0.281i)4-s + (−0.0367 − 0.00553i)5-s + (0.297 + 0.373i)6-s + (−0.927 + 0.372i)7-s + (0.220 − 0.276i)8-s + (0.398 − 0.370i)9-s + (−0.0259 + 0.00391i)10-s + (−0.848 − 0.787i)11-s + (0.278 + 0.190i)12-s + (−0.106 + 0.466i)13-s + (−0.549 + 0.445i)14-s + (−0.00558 − 0.0244i)15-s + (0.0913 − 0.232i)16-s + (−0.0260 + 0.347i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.122i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 - 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $0.992 - 0.122i$
Analytic conductor: \(0.782533\)
Root analytic conductor: \(0.884609\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{98} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :1/2),\ 0.992 - 0.122i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.39629 + 0.0856835i\)
\(L(\frac12)\) \(\approx\) \(1.39629 + 0.0856835i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.955 + 0.294i)T \)
7 \( 1 + (2.45 - 0.985i)T \)
good3 \( 1 + (-0.427 - 1.08i)T + (-2.19 + 2.04i)T^{2} \)
5 \( 1 + (0.0821 + 0.0123i)T + (4.77 + 1.47i)T^{2} \)
11 \( 1 + (2.81 + 2.61i)T + (0.822 + 10.9i)T^{2} \)
13 \( 1 + (0.384 - 1.68i)T + (-11.7 - 5.64i)T^{2} \)
17 \( 1 + (0.107 - 1.43i)T + (-16.8 - 2.53i)T^{2} \)
19 \( 1 + (1.48 + 2.56i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.117 - 1.56i)T + (-22.7 + 3.42i)T^{2} \)
29 \( 1 + (-4.85 + 2.34i)T + (18.0 - 22.6i)T^{2} \)
31 \( 1 + (5.30 - 9.17i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-6.91 - 4.71i)T + (13.5 + 34.4i)T^{2} \)
41 \( 1 + (-2.53 + 3.17i)T + (-9.12 - 39.9i)T^{2} \)
43 \( 1 + (0.652 + 0.817i)T + (-9.56 + 41.9i)T^{2} \)
47 \( 1 + (-8.15 + 2.51i)T + (38.8 - 26.4i)T^{2} \)
53 \( 1 + (-2.84 + 1.94i)T + (19.3 - 49.3i)T^{2} \)
59 \( 1 + (-3.45 + 0.520i)T + (56.3 - 17.3i)T^{2} \)
61 \( 1 + (-0.521 - 0.355i)T + (22.2 + 56.7i)T^{2} \)
67 \( 1 + (5.32 - 9.22i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (4.00 + 1.92i)T + (44.2 + 55.5i)T^{2} \)
73 \( 1 + (7.73 + 2.38i)T + (60.3 + 41.1i)T^{2} \)
79 \( 1 + (-6.16 - 10.6i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (3.19 + 14.0i)T + (-74.7 + 36.0i)T^{2} \)
89 \( 1 + (11.3 - 10.5i)T + (6.65 - 88.7i)T^{2} \)
97 \( 1 + 12.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.84593600730948078050820650442, −12.96314256101413795723799509573, −12.00511878678345490599069790594, −10.69651774992616681182487002987, −9.790098426522978838188075518924, −8.657879737435610526177165398000, −6.89550790419969518139018305746, −5.66757634375490141555499370060, −4.15438312330091793667759772115, −2.90312413154170727052021560636, 2.51812298702047984220304781566, 4.26530578057937287608860883437, 5.85897507409912874451224769259, 7.19620649920694086874670116794, 7.86935982901573571531051378204, 9.704495863782537532758157530495, 10.72733659262635329362157253469, 12.32395091362016640691284055782, 12.97264048596067698950575266563, 13.62070668136370569661320686432

Graph of the $Z$-function along the critical line