Properties

Label 16-98e8-1.1-c13e8-0-1
Degree $16$
Conductor $8.508\times 10^{15}$
Sign $1$
Analytic cond. $1.48719\times 10^{16}$
Root an. cond. $10.2511$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 256·2-s − 182·3-s + 2.45e4·4-s − 1.79e3·5-s − 4.65e4·6-s + 3.50e6·9-s − 4.58e5·10-s − 8.72e6·11-s − 4.47e6·12-s − 1.43e6·13-s + 3.26e5·15-s − 2.51e8·16-s + 7.94e6·17-s + 8.97e8·18-s + 2.15e8·19-s − 4.40e7·20-s − 2.23e9·22-s − 6.19e7·23-s + 1.77e9·25-s − 3.68e8·26-s + 2.60e8·27-s − 6.32e9·29-s + 8.34e7·30-s − 6.11e9·31-s − 2.57e10·32-s + 1.58e9·33-s + 2.03e9·34-s + ⋯
L(s)  = 1  + 2.82·2-s − 0.144·3-s + 3·4-s − 0.0512·5-s − 0.407·6-s + 2.19·9-s − 0.145·10-s − 1.48·11-s − 0.432·12-s − 0.0826·13-s + 0.00739·15-s − 3.75·16-s + 0.0798·17-s + 6.21·18-s + 1.05·19-s − 0.153·20-s − 4.20·22-s − 0.0872·23-s + 1.45·25-s − 0.233·26-s + 0.129·27-s − 1.97·29-s + 0.0209·30-s − 1.23·31-s − 4.24·32-s + 0.214·33-s + 0.225·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(14-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+13/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 7^{16}\)
Sign: $1$
Analytic conductor: \(1.48719\times 10^{16}\)
Root analytic conductor: \(10.2511\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 7^{16} ,\ ( \ : [13/2]^{8} ),\ 1 )\)

Particular Values

\(L(7)\) \(\approx\) \(22.87758661\)
\(L(\frac12)\) \(\approx\) \(22.87758661\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - p^{6} T + p^{12} T^{2} )^{4} \)
7 \( 1 \)
good3 \( 1 + 182 T - 3472004 T^{2} - 510005888 p T^{3} + 610111576351 p^{2} T^{4} + 38594331621020 p^{4} T^{5} - 6098702794604744 p^{6} T^{6} - 132316912065600514 p^{9} T^{7} + 7966403831993958904 p^{12} T^{8} - 132316912065600514 p^{22} T^{9} - 6098702794604744 p^{32} T^{10} + 38594331621020 p^{43} T^{11} + 610111576351 p^{54} T^{12} - 510005888 p^{66} T^{13} - 3472004 p^{78} T^{14} + 182 p^{91} T^{15} + p^{104} T^{16} \)
5 \( 1 + 1792 T - 1775878222 T^{2} - 184747900060528 T^{3} + 2296434795996497581 T^{4} + \)\(55\!\cdots\!84\)\( p T^{5} + \)\(50\!\cdots\!26\)\( p^{2} T^{6} - \)\(53\!\cdots\!12\)\( p^{4} T^{7} - \)\(11\!\cdots\!96\)\( p^{6} T^{8} - \)\(53\!\cdots\!12\)\( p^{17} T^{9} + \)\(50\!\cdots\!26\)\( p^{28} T^{10} + \)\(55\!\cdots\!84\)\( p^{40} T^{11} + 2296434795996497581 p^{52} T^{12} - 184747900060528 p^{65} T^{13} - 1775878222 p^{78} T^{14} + 1792 p^{91} T^{15} + p^{104} T^{16} \)
11 \( 1 + 8726914 T - 25911547427740 T^{2} - 67039793147424510224 p T^{3} - \)\(11\!\cdots\!25\)\( p^{2} T^{4} + \)\(22\!\cdots\!28\)\( p^{3} T^{5} + \)\(12\!\cdots\!92\)\( p^{4} T^{6} - \)\(31\!\cdots\!90\)\( p^{5} T^{7} - \)\(47\!\cdots\!56\)\( p^{6} T^{8} - \)\(31\!\cdots\!90\)\( p^{18} T^{9} + \)\(12\!\cdots\!92\)\( p^{30} T^{10} + \)\(22\!\cdots\!28\)\( p^{42} T^{11} - \)\(11\!\cdots\!25\)\( p^{54} T^{12} - 67039793147424510224 p^{66} T^{13} - 25911547427740 p^{78} T^{14} + 8726914 p^{91} T^{15} + p^{104} T^{16} \)
13 \( ( 1 + 719208 T + 661703400953692 T^{2} + \)\(30\!\cdots\!92\)\( T^{3} + \)\(24\!\cdots\!34\)\( T^{4} + \)\(30\!\cdots\!92\)\( p^{13} T^{5} + 661703400953692 p^{26} T^{6} + 719208 p^{39} T^{7} + p^{52} T^{8} )^{2} \)
17 \( 1 - 7943068 T - 12420153001480906 T^{2} - \)\(15\!\cdots\!36\)\( T^{3} + \)\(32\!\cdots\!53\)\( T^{4} + \)\(18\!\cdots\!12\)\( T^{5} + \)\(14\!\cdots\!82\)\( T^{6} - \)\(10\!\cdots\!96\)\( T^{7} - \)\(13\!\cdots\!44\)\( T^{8} - \)\(10\!\cdots\!96\)\( p^{13} T^{9} + \)\(14\!\cdots\!82\)\( p^{26} T^{10} + \)\(18\!\cdots\!12\)\( p^{39} T^{11} + \)\(32\!\cdots\!53\)\( p^{52} T^{12} - \)\(15\!\cdots\!36\)\( p^{65} T^{13} - 12420153001480906 p^{78} T^{14} - 7943068 p^{91} T^{15} + p^{104} T^{16} \)
19 \( 1 - 215706806 T - 83649252740873580 T^{2} + \)\(64\!\cdots\!84\)\( T^{3} + \)\(61\!\cdots\!95\)\( T^{4} + \)\(73\!\cdots\!52\)\( T^{5} - \)\(31\!\cdots\!04\)\( T^{6} + \)\(14\!\cdots\!30\)\( T^{7} + \)\(11\!\cdots\!32\)\( T^{8} + \)\(14\!\cdots\!30\)\( p^{13} T^{9} - \)\(31\!\cdots\!04\)\( p^{26} T^{10} + \)\(73\!\cdots\!52\)\( p^{39} T^{11} + \)\(61\!\cdots\!95\)\( p^{52} T^{12} + \)\(64\!\cdots\!84\)\( p^{65} T^{13} - 83649252740873580 p^{78} T^{14} - 215706806 p^{91} T^{15} + p^{104} T^{16} \)
23 \( 1 + 61927978 T - 1190855939592873856 T^{2} + \)\(30\!\cdots\!76\)\( T^{3} + \)\(72\!\cdots\!19\)\( T^{4} - \)\(28\!\cdots\!84\)\( T^{5} - \)\(22\!\cdots\!24\)\( T^{6} + \)\(84\!\cdots\!66\)\( T^{7} + \)\(67\!\cdots\!48\)\( T^{8} + \)\(84\!\cdots\!66\)\( p^{13} T^{9} - \)\(22\!\cdots\!24\)\( p^{26} T^{10} - \)\(28\!\cdots\!84\)\( p^{39} T^{11} + \)\(72\!\cdots\!19\)\( p^{52} T^{12} + \)\(30\!\cdots\!76\)\( p^{65} T^{13} - 1190855939592873856 p^{78} T^{14} + 61927978 p^{91} T^{15} + p^{104} T^{16} \)
29 \( ( 1 + 3162923032 T + 22916063388720489116 T^{2} + \)\(10\!\cdots\!52\)\( T^{3} + \)\(16\!\cdots\!10\)\( T^{4} + \)\(10\!\cdots\!52\)\( p^{13} T^{5} + 22916063388720489116 p^{26} T^{6} + 3162923032 p^{39} T^{7} + p^{52} T^{8} )^{2} \)
31 \( 1 + 6113775570 T - 34184846727810893416 T^{2} + \)\(15\!\cdots\!56\)\( T^{3} + \)\(19\!\cdots\!11\)\( T^{4} - \)\(31\!\cdots\!76\)\( T^{5} - \)\(38\!\cdots\!04\)\( T^{6} + \)\(15\!\cdots\!66\)\( T^{7} + \)\(24\!\cdots\!44\)\( T^{8} + \)\(15\!\cdots\!66\)\( p^{13} T^{9} - \)\(38\!\cdots\!04\)\( p^{26} T^{10} - \)\(31\!\cdots\!76\)\( p^{39} T^{11} + \)\(19\!\cdots\!11\)\( p^{52} T^{12} + \)\(15\!\cdots\!56\)\( p^{65} T^{13} - 34184846727810893416 p^{78} T^{14} + 6113775570 p^{91} T^{15} + p^{104} T^{16} \)
37 \( 1 + 3945652880 T - \)\(35\!\cdots\!22\)\( T^{2} - \)\(75\!\cdots\!84\)\( T^{3} + \)\(29\!\cdots\!37\)\( T^{4} + \)\(20\!\cdots\!48\)\( T^{5} + \)\(26\!\cdots\!46\)\( T^{6} - \)\(26\!\cdots\!52\)\( T^{7} - \)\(78\!\cdots\!16\)\( T^{8} - \)\(26\!\cdots\!52\)\( p^{13} T^{9} + \)\(26\!\cdots\!46\)\( p^{26} T^{10} + \)\(20\!\cdots\!48\)\( p^{39} T^{11} + \)\(29\!\cdots\!37\)\( p^{52} T^{12} - \)\(75\!\cdots\!84\)\( p^{65} T^{13} - \)\(35\!\cdots\!22\)\( p^{78} T^{14} + 3945652880 p^{91} T^{15} + p^{104} T^{16} \)
41 \( ( 1 + 43189289976 T + \)\(25\!\cdots\!84\)\( T^{2} + \)\(40\!\cdots\!84\)\( T^{3} + \)\(19\!\cdots\!30\)\( T^{4} + \)\(40\!\cdots\!84\)\( p^{13} T^{5} + \)\(25\!\cdots\!84\)\( p^{26} T^{6} + 43189289976 p^{39} T^{7} + p^{52} T^{8} )^{2} \)
43 \( ( 1 + 54537062128 T + \)\(53\!\cdots\!52\)\( T^{2} + \)\(27\!\cdots\!32\)\( T^{3} + \)\(12\!\cdots\!74\)\( T^{4} + \)\(27\!\cdots\!32\)\( p^{13} T^{5} + \)\(53\!\cdots\!52\)\( p^{26} T^{6} + 54537062128 p^{39} T^{7} + p^{52} T^{8} )^{2} \)
47 \( 1 - 3141202722 T - \)\(99\!\cdots\!08\)\( T^{2} - \)\(96\!\cdots\!24\)\( T^{3} + \)\(56\!\cdots\!43\)\( T^{4} + \)\(74\!\cdots\!24\)\( T^{5} + \)\(37\!\cdots\!04\)\( T^{6} - \)\(31\!\cdots\!22\)\( T^{7} - \)\(30\!\cdots\!12\)\( T^{8} - \)\(31\!\cdots\!22\)\( p^{13} T^{9} + \)\(37\!\cdots\!04\)\( p^{26} T^{10} + \)\(74\!\cdots\!24\)\( p^{39} T^{11} + \)\(56\!\cdots\!43\)\( p^{52} T^{12} - \)\(96\!\cdots\!24\)\( p^{65} T^{13} - \)\(99\!\cdots\!08\)\( p^{78} T^{14} - 3141202722 p^{91} T^{15} + p^{104} T^{16} \)
53 \( 1 - 149625680376 T - \)\(32\!\cdots\!14\)\( T^{2} + \)\(30\!\cdots\!72\)\( T^{3} + \)\(35\!\cdots\!73\)\( T^{4} + \)\(83\!\cdots\!64\)\( T^{5} - \)\(14\!\cdots\!22\)\( T^{6} - \)\(22\!\cdots\!88\)\( T^{7} + \)\(70\!\cdots\!56\)\( T^{8} - \)\(22\!\cdots\!88\)\( p^{13} T^{9} - \)\(14\!\cdots\!22\)\( p^{26} T^{10} + \)\(83\!\cdots\!64\)\( p^{39} T^{11} + \)\(35\!\cdots\!73\)\( p^{52} T^{12} + \)\(30\!\cdots\!72\)\( p^{65} T^{13} - \)\(32\!\cdots\!14\)\( p^{78} T^{14} - 149625680376 p^{91} T^{15} + p^{104} T^{16} \)
59 \( 1 - 866297313938 T + \)\(26\!\cdots\!16\)\( T^{2} - \)\(32\!\cdots\!72\)\( T^{3} - \)\(16\!\cdots\!01\)\( T^{4} + \)\(55\!\cdots\!40\)\( T^{5} - \)\(29\!\cdots\!16\)\( T^{6} + \)\(69\!\cdots\!46\)\( T^{7} - \)\(13\!\cdots\!88\)\( T^{8} + \)\(69\!\cdots\!46\)\( p^{13} T^{9} - \)\(29\!\cdots\!16\)\( p^{26} T^{10} + \)\(55\!\cdots\!40\)\( p^{39} T^{11} - \)\(16\!\cdots\!01\)\( p^{52} T^{12} - \)\(32\!\cdots\!72\)\( p^{65} T^{13} + \)\(26\!\cdots\!16\)\( p^{78} T^{14} - 866297313938 p^{91} T^{15} + p^{104} T^{16} \)
61 \( 1 - 477908594184 T - \)\(49\!\cdots\!54\)\( T^{2} + \)\(12\!\cdots\!32\)\( T^{3} + \)\(22\!\cdots\!57\)\( T^{4} - \)\(35\!\cdots\!84\)\( T^{5} - \)\(56\!\cdots\!18\)\( T^{6} + \)\(12\!\cdots\!52\)\( T^{7} + \)\(11\!\cdots\!56\)\( T^{8} + \)\(12\!\cdots\!52\)\( p^{13} T^{9} - \)\(56\!\cdots\!18\)\( p^{26} T^{10} - \)\(35\!\cdots\!84\)\( p^{39} T^{11} + \)\(22\!\cdots\!57\)\( p^{52} T^{12} + \)\(12\!\cdots\!32\)\( p^{65} T^{13} - \)\(49\!\cdots\!54\)\( p^{78} T^{14} - 477908594184 p^{91} T^{15} + p^{104} T^{16} \)
67 \( 1 - 1895501016278 T + \)\(16\!\cdots\!44\)\( T^{2} + \)\(36\!\cdots\!92\)\( T^{3} + \)\(20\!\cdots\!99\)\( T^{4} - \)\(15\!\cdots\!64\)\( T^{5} - \)\(63\!\cdots\!80\)\( T^{6} - \)\(28\!\cdots\!02\)\( T^{7} + \)\(12\!\cdots\!00\)\( T^{8} - \)\(28\!\cdots\!02\)\( p^{13} T^{9} - \)\(63\!\cdots\!80\)\( p^{26} T^{10} - \)\(15\!\cdots\!64\)\( p^{39} T^{11} + \)\(20\!\cdots\!99\)\( p^{52} T^{12} + \)\(36\!\cdots\!92\)\( p^{65} T^{13} + \)\(16\!\cdots\!44\)\( p^{78} T^{14} - 1895501016278 p^{91} T^{15} + p^{104} T^{16} \)
71 \( ( 1 - 319416336064 T + \)\(11\!\cdots\!92\)\( T^{2} + \)\(18\!\cdots\!52\)\( T^{3} + \)\(28\!\cdots\!78\)\( p T^{4} + \)\(18\!\cdots\!52\)\( p^{13} T^{5} + \)\(11\!\cdots\!92\)\( p^{26} T^{6} - 319416336064 p^{39} T^{7} + p^{52} T^{8} )^{2} \)
73 \( 1 - 2966596192756 T - \)\(63\!\cdots\!50\)\( T^{2} + \)\(36\!\cdots\!60\)\( T^{3} + \)\(16\!\cdots\!25\)\( T^{4} - \)\(21\!\cdots\!56\)\( T^{5} - \)\(21\!\cdots\!70\)\( T^{6} - \)\(68\!\cdots\!04\)\( p T^{7} + \)\(16\!\cdots\!24\)\( p^{2} T^{8} - \)\(68\!\cdots\!04\)\( p^{14} T^{9} - \)\(21\!\cdots\!70\)\( p^{26} T^{10} - \)\(21\!\cdots\!56\)\( p^{39} T^{11} + \)\(16\!\cdots\!25\)\( p^{52} T^{12} + \)\(36\!\cdots\!60\)\( p^{65} T^{13} - \)\(63\!\cdots\!50\)\( p^{78} T^{14} - 2966596192756 p^{91} T^{15} + p^{104} T^{16} \)
79 \( 1 + 6505959677634 T + \)\(10\!\cdots\!40\)\( T^{2} + \)\(11\!\cdots\!68\)\( T^{3} + \)\(13\!\cdots\!83\)\( T^{4} + \)\(31\!\cdots\!32\)\( T^{5} - \)\(17\!\cdots\!68\)\( T^{6} + \)\(60\!\cdots\!74\)\( T^{7} + \)\(43\!\cdots\!56\)\( T^{8} + \)\(60\!\cdots\!74\)\( p^{13} T^{9} - \)\(17\!\cdots\!68\)\( p^{26} T^{10} + \)\(31\!\cdots\!32\)\( p^{39} T^{11} + \)\(13\!\cdots\!83\)\( p^{52} T^{12} + \)\(11\!\cdots\!68\)\( p^{65} T^{13} + \)\(10\!\cdots\!40\)\( p^{78} T^{14} + 6505959677634 p^{91} T^{15} + p^{104} T^{16} \)
83 \( ( 1 - 1689908567984 T + \)\(20\!\cdots\!40\)\( T^{2} - \)\(40\!\cdots\!32\)\( T^{3} + \)\(20\!\cdots\!38\)\( T^{4} - \)\(40\!\cdots\!32\)\( p^{13} T^{5} + \)\(20\!\cdots\!40\)\( p^{26} T^{6} - 1689908567984 p^{39} T^{7} + p^{52} T^{8} )^{2} \)
89 \( 1 + 9586601667468 T - \)\(11\!\cdots\!14\)\( T^{2} - \)\(13\!\cdots\!04\)\( T^{3} + \)\(18\!\cdots\!49\)\( T^{4} + \)\(53\!\cdots\!00\)\( T^{5} - \)\(54\!\cdots\!90\)\( T^{6} - \)\(55\!\cdots\!68\)\( T^{7} + \)\(12\!\cdots\!52\)\( T^{8} - \)\(55\!\cdots\!68\)\( p^{13} T^{9} - \)\(54\!\cdots\!90\)\( p^{26} T^{10} + \)\(53\!\cdots\!00\)\( p^{39} T^{11} + \)\(18\!\cdots\!49\)\( p^{52} T^{12} - \)\(13\!\cdots\!04\)\( p^{65} T^{13} - \)\(11\!\cdots\!14\)\( p^{78} T^{14} + 9586601667468 p^{91} T^{15} + p^{104} T^{16} \)
97 \( ( 1 - 22280367655784 T + \)\(39\!\cdots\!28\)\( T^{2} - \)\(43\!\cdots\!36\)\( T^{3} + \)\(42\!\cdots\!74\)\( T^{4} - \)\(43\!\cdots\!36\)\( p^{13} T^{5} + \)\(39\!\cdots\!28\)\( p^{26} T^{6} - 22280367655784 p^{39} T^{7} + p^{52} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.19840708985919642460547704696, −3.62117043692524912558839189063, −3.61314817436273774442732312341, −3.53138980688957487856532561267, −3.49452881311243806941560791761, −3.46866557508052646829211748899, −3.27155690820146584901732177912, −3.20834207200289505279463318006, −3.01322482592077238090545226607, −2.67875424711502347163948919843, −2.43393140588448153105992816960, −2.06275651947543051805763029151, −2.03966915316363760253719505191, −2.01014158252912239267307709412, −1.99011090017779131204682904065, −1.98118115368404483672470243721, −1.58559480404558305685228739663, −1.13544695586186724191787291553, −1.12228600566929364228175615608, −0.918205749705019020810371998604, −0.799330788986862499646859618562, −0.55663501721014662955280169075, −0.51296967283493729106523980122, −0.35381646812486950896909773361, −0.10796149971287072367514104415, 0.10796149971287072367514104415, 0.35381646812486950896909773361, 0.51296967283493729106523980122, 0.55663501721014662955280169075, 0.799330788986862499646859618562, 0.918205749705019020810371998604, 1.12228600566929364228175615608, 1.13544695586186724191787291553, 1.58559480404558305685228739663, 1.98118115368404483672470243721, 1.99011090017779131204682904065, 2.01014158252912239267307709412, 2.03966915316363760253719505191, 2.06275651947543051805763029151, 2.43393140588448153105992816960, 2.67875424711502347163948919843, 3.01322482592077238090545226607, 3.20834207200289505279463318006, 3.27155690820146584901732177912, 3.46866557508052646829211748899, 3.49452881311243806941560791761, 3.53138980688957487856532561267, 3.61314817436273774442732312341, 3.62117043692524912558839189063, 4.19840708985919642460547704696

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.