Properties

Label 2-98-7.3-c12-0-39
Degree $2$
Conductor $98$
Sign $-0.0633 + 0.997i$
Analytic cond. $89.5713$
Root an. cond. $9.46421$
Motivic weight $12$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (22.6 + 39.1i)2-s + (444. + 256. i)3-s + (−1.02e3 + 1.77e3i)4-s + (1.26e4 − 7.32e3i)5-s + 2.32e4i·6-s − 9.26e4·8-s + (−1.34e5 − 2.32e5i)9-s + (5.74e5 + 3.31e5i)10-s + (1.34e6 − 2.32e6i)11-s + (−9.09e5 + 5.25e5i)12-s + 1.34e6i·13-s + 7.51e6·15-s + (−2.09e6 − 3.63e6i)16-s + (−6.20e6 − 3.58e6i)17-s + (6.07e6 − 1.05e7i)18-s + (−6.33e7 + 3.65e7i)19-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (0.609 + 0.351i)3-s + (−0.249 + 0.433i)4-s + (0.812 − 0.468i)5-s + 0.497i·6-s − 0.353·8-s + (−0.252 − 0.437i)9-s + (0.574 + 0.331i)10-s + (0.757 − 1.31i)11-s + (−0.304 + 0.175i)12-s + 0.279i·13-s + 0.659·15-s + (−0.125 − 0.216i)16-s + (−0.257 − 0.148i)17-s + (0.178 − 0.309i)18-s + (−1.34 + 0.777i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 + 0.997i)\, \overline{\Lambda}(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & (-0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $-0.0633 + 0.997i$
Analytic conductor: \(89.5713\)
Root analytic conductor: \(9.46421\)
Motivic weight: \(12\)
Rational: no
Arithmetic: yes
Character: $\chi_{98} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :6),\ -0.0633 + 0.997i)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(1.535605644\)
\(L(\frac12)\) \(\approx\) \(1.535605644\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-22.6 - 39.1i)T \)
7 \( 1 \)
good3 \( 1 + (-444. - 256. i)T + (2.65e5 + 4.60e5i)T^{2} \)
5 \( 1 + (-1.26e4 + 7.32e3i)T + (1.22e8 - 2.11e8i)T^{2} \)
11 \( 1 + (-1.34e6 + 2.32e6i)T + (-1.56e12 - 2.71e12i)T^{2} \)
13 \( 1 - 1.34e6iT - 2.32e13T^{2} \)
17 \( 1 + (6.20e6 + 3.58e6i)T + (2.91e14 + 5.04e14i)T^{2} \)
19 \( 1 + (6.33e7 - 3.65e7i)T + (1.10e15 - 1.91e15i)T^{2} \)
23 \( 1 + (1.14e8 + 1.97e8i)T + (-1.09e16 + 1.89e16i)T^{2} \)
29 \( 1 + 5.69e8T + 3.53e17T^{2} \)
31 \( 1 + (2.67e8 + 1.54e8i)T + (3.93e17 + 6.82e17i)T^{2} \)
37 \( 1 + (8.51e8 + 1.47e9i)T + (-3.29e18 + 5.70e18i)T^{2} \)
41 \( 1 - 5.37e9iT - 2.25e19T^{2} \)
43 \( 1 + 9.19e9T + 3.99e19T^{2} \)
47 \( 1 + (9.45e9 - 5.45e9i)T + (5.80e19 - 1.00e20i)T^{2} \)
53 \( 1 + (-7.92e9 + 1.37e10i)T + (-2.45e20 - 4.25e20i)T^{2} \)
59 \( 1 + (1.75e10 + 1.01e10i)T + (8.89e20 + 1.54e21i)T^{2} \)
61 \( 1 + (2.38e10 - 1.37e10i)T + (1.32e21 - 2.29e21i)T^{2} \)
67 \( 1 + (3.35e10 - 5.80e10i)T + (-4.09e21 - 7.08e21i)T^{2} \)
71 \( 1 - 7.34e10T + 1.64e22T^{2} \)
73 \( 1 + (5.62e10 + 3.24e10i)T + (1.14e22 + 1.98e22i)T^{2} \)
79 \( 1 + (3.16e9 + 5.48e9i)T + (-2.95e22 + 5.11e22i)T^{2} \)
83 \( 1 - 5.07e11iT - 1.06e23T^{2} \)
89 \( 1 + (-5.49e11 + 3.17e11i)T + (1.23e23 - 2.13e23i)T^{2} \)
97 \( 1 + 3.89e11iT - 6.93e23T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.33749785560258915244831838332, −9.852190173848648700319201503253, −8.865652279742821953085755728848, −8.306942808602509852786222608329, −6.46417664810937061208467978794, −5.83955578756559731164124837386, −4.33005134722967371430949213711, −3.34738007149404112004845489028, −1.87572326344976325164227006377, −0.23517717081877376459944666186, 1.82093854553656086852417222423, 2.11729514424979753293594800593, 3.53380063068215068318969999268, 4.88959399130029345885736581426, 6.23074740395825742392038820941, 7.36323724107481010925236722627, 8.790678064909014620677624711842, 9.782724125229889352744505292591, 10.70470958333241844603038269246, 11.88660134652094467293994838407

Graph of the $Z$-function along the critical line