Properties

Label 4-9702e2-1.1-c1e2-0-37
Degree $4$
Conductor $94128804$
Sign $1$
Analytic cond. $6001.73$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s + 2·11-s + 5·16-s + 4·22-s − 16·23-s − 10·25-s − 4·29-s + 6·32-s + 4·37-s − 8·43-s + 6·44-s − 32·46-s − 20·50-s − 28·53-s − 8·58-s + 7·64-s + 8·67-s + 8·74-s − 32·79-s − 16·86-s + 8·88-s − 48·92-s − 30·100-s − 56·106-s − 24·107-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.41·8-s + 0.603·11-s + 5/4·16-s + 0.852·22-s − 3.33·23-s − 2·25-s − 0.742·29-s + 1.06·32-s + 0.657·37-s − 1.21·43-s + 0.904·44-s − 4.71·46-s − 2.82·50-s − 3.84·53-s − 1.05·58-s + 7/8·64-s + 0.977·67-s + 0.929·74-s − 3.60·79-s − 1.72·86-s + 0.852·88-s − 5.00·92-s − 3·100-s − 5.43·106-s − 2.32·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(94128804\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(6001.73\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 94128804,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3 \( 1 \)
7 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.35254590003840099969194456766, −7.26291126010817866608730322856, −6.45379480453288463630673707805, −6.45135567153230697369483542793, −6.04357401203699063151521472821, −5.91945577831179393514408992648, −5.44412349960301715849966381951, −5.18207569668082943879702524376, −4.57617347953927903099198520157, −4.31742103928807866958260303629, −3.94894170634214286509505704383, −3.88749025465319802027830176707, −3.23199485372711231632169723570, −3.09622179569473426352489015259, −2.28308644108255541101560857236, −2.12973997053598942616145080949, −1.53611668743012339964030891379, −1.45576040914551718071665578373, 0, 0, 1.45576040914551718071665578373, 1.53611668743012339964030891379, 2.12973997053598942616145080949, 2.28308644108255541101560857236, 3.09622179569473426352489015259, 3.23199485372711231632169723570, 3.88749025465319802027830176707, 3.94894170634214286509505704383, 4.31742103928807866958260303629, 4.57617347953927903099198520157, 5.18207569668082943879702524376, 5.44412349960301715849966381951, 5.91945577831179393514408992648, 6.04357401203699063151521472821, 6.45135567153230697369483542793, 6.45379480453288463630673707805, 7.26291126010817866608730322856, 7.35254590003840099969194456766

Graph of the $Z$-function along the critical line