Properties

Label 4-9680e2-1.1-c1e2-0-10
Degree $4$
Conductor $93702400$
Sign $1$
Analytic cond. $5974.54$
Root an. cond. $8.79176$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 2·5-s + 6·9-s − 8·15-s − 12·23-s + 3·25-s + 4·27-s − 8·31-s + 20·37-s + 12·45-s + 12·47-s − 2·49-s − 12·53-s − 20·67-s + 48·69-s − 12·75-s − 37·81-s − 12·89-s + 32·93-s − 20·97-s − 4·103-s − 80·111-s + 12·113-s − 24·115-s + 4·125-s + 127-s + 131-s + ⋯
L(s)  = 1  − 2.30·3-s + 0.894·5-s + 2·9-s − 2.06·15-s − 2.50·23-s + 3/5·25-s + 0.769·27-s − 1.43·31-s + 3.28·37-s + 1.78·45-s + 1.75·47-s − 2/7·49-s − 1.64·53-s − 2.44·67-s + 5.77·69-s − 1.38·75-s − 4.11·81-s − 1.27·89-s + 3.31·93-s − 2.03·97-s − 0.394·103-s − 7.59·111-s + 1.12·113-s − 2.23·115-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93702400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93702400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(93702400\)    =    \(2^{8} \cdot 5^{2} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(5974.54\)
Root analytic conductor: \(8.79176\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 93702400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
11 \( 1 \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 134 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.30257145429964989470127056321, −7.16152133107608755048454354954, −6.46481495347833655471505935935, −6.36681755298627482981543164659, −6.08932151915693439615622831325, −5.77020538277290503662835174098, −5.52003923703056519246466974515, −5.50699551999427299692981136178, −4.65751709201663183287855503289, −4.63751013167091288395795264502, −4.14712762057067364199079420065, −3.92622695030864409994788600927, −2.96320744418115190390988195383, −2.95283724871260692501086256254, −2.22640870311995561967624391743, −1.90207122957652895029283014155, −1.24669399941346977336697117269, −0.911466659384810470525287915962, 0, 0, 0.911466659384810470525287915962, 1.24669399941346977336697117269, 1.90207122957652895029283014155, 2.22640870311995561967624391743, 2.95283724871260692501086256254, 2.96320744418115190390988195383, 3.92622695030864409994788600927, 4.14712762057067364199079420065, 4.63751013167091288395795264502, 4.65751709201663183287855503289, 5.50699551999427299692981136178, 5.52003923703056519246466974515, 5.77020538277290503662835174098, 6.08932151915693439615622831325, 6.36681755298627482981543164659, 6.46481495347833655471505935935, 7.16152133107608755048454354954, 7.30257145429964989470127056321

Graph of the $Z$-function along the critical line