Properties

Label 2-966-23.18-c1-0-1
Degree $2$
Conductor $966$
Sign $-0.908 + 0.417i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.959 − 0.281i)2-s + (−0.654 + 0.755i)3-s + (0.841 + 0.540i)4-s + (−0.578 + 4.02i)5-s + (0.841 − 0.540i)6-s + (0.415 + 0.909i)7-s + (−0.654 − 0.755i)8-s + (−0.142 − 0.989i)9-s + (1.68 − 3.69i)10-s + (−4.31 + 1.26i)11-s + (−0.959 + 0.281i)12-s + (−1.31 + 2.88i)13-s + (−0.142 − 0.989i)14-s + (−2.66 − 3.07i)15-s + (0.415 + 0.909i)16-s + (−0.558 + 0.359i)17-s + ⋯
L(s)  = 1  + (−0.678 − 0.199i)2-s + (−0.378 + 0.436i)3-s + (0.420 + 0.270i)4-s + (−0.258 + 1.79i)5-s + (0.343 − 0.220i)6-s + (0.157 + 0.343i)7-s + (−0.231 − 0.267i)8-s + (−0.0474 − 0.329i)9-s + (0.533 − 1.16i)10-s + (−1.30 + 0.382i)11-s + (−0.276 + 0.0813i)12-s + (−0.365 + 0.800i)13-s + (−0.0380 − 0.264i)14-s + (−0.687 − 0.792i)15-s + (0.103 + 0.227i)16-s + (−0.135 + 0.0870i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.908 + 0.417i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.908 + 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $-0.908 + 0.417i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (547, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ -0.908 + 0.417i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.103893 - 0.474412i\)
\(L(\frac12)\) \(\approx\) \(0.103893 - 0.474412i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.959 + 0.281i)T \)
3 \( 1 + (0.654 - 0.755i)T \)
7 \( 1 + (-0.415 - 0.909i)T \)
23 \( 1 + (4.57 + 1.44i)T \)
good5 \( 1 + (0.578 - 4.02i)T + (-4.79 - 1.40i)T^{2} \)
11 \( 1 + (4.31 - 1.26i)T + (9.25 - 5.94i)T^{2} \)
13 \( 1 + (1.31 - 2.88i)T + (-8.51 - 9.82i)T^{2} \)
17 \( 1 + (0.558 - 0.359i)T + (7.06 - 15.4i)T^{2} \)
19 \( 1 + (-6.29 - 4.04i)T + (7.89 + 17.2i)T^{2} \)
29 \( 1 + (-1.58 + 1.01i)T + (12.0 - 26.3i)T^{2} \)
31 \( 1 + (-4.24 - 4.90i)T + (-4.41 + 30.6i)T^{2} \)
37 \( 1 + (0.681 + 4.74i)T + (-35.5 + 10.4i)T^{2} \)
41 \( 1 + (-0.859 + 5.97i)T + (-39.3 - 11.5i)T^{2} \)
43 \( 1 + (-5.73 + 6.62i)T + (-6.11 - 42.5i)T^{2} \)
47 \( 1 - 2.82T + 47T^{2} \)
53 \( 1 + (-2.29 - 5.02i)T + (-34.7 + 40.0i)T^{2} \)
59 \( 1 + (3.64 - 7.99i)T + (-38.6 - 44.5i)T^{2} \)
61 \( 1 + (7.57 + 8.74i)T + (-8.68 + 60.3i)T^{2} \)
67 \( 1 + (-5.92 - 1.73i)T + (56.3 + 36.2i)T^{2} \)
71 \( 1 + (1.20 + 0.353i)T + (59.7 + 38.3i)T^{2} \)
73 \( 1 + (11.6 + 7.47i)T + (30.3 + 66.4i)T^{2} \)
79 \( 1 + (3.86 - 8.45i)T + (-51.7 - 59.7i)T^{2} \)
83 \( 1 + (1.37 + 9.54i)T + (-79.6 + 23.3i)T^{2} \)
89 \( 1 + (2.66 - 3.07i)T + (-12.6 - 88.0i)T^{2} \)
97 \( 1 + (0.803 - 5.58i)T + (-93.0 - 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32545332018710735754355251642, −10.07485798600522852804275800666, −8.989490447758857894052819910207, −7.73040616570111273032087804241, −7.36220081148406583135054617115, −6.35241325759384748407829890446, −5.47661718468876651359101602324, −4.08754866060410649584591413758, −3.00574124831443568286515210420, −2.17785422239969813874528408343, 0.32008696663499598047873338053, 1.21778507648902232933990962371, 2.79981091839100945327314407302, 4.56206012994050241405905097852, 5.24818244057855168494969354672, 5.95626387685396917610145178112, 7.43650287619915426417529815968, 7.909083286986748247693331349605, 8.494000666770645176139428578355, 9.539994197945387887613938468583

Graph of the $Z$-function along the critical line