Properties

Label 2-966-23.13-c1-0-22
Degree $2$
Conductor $966$
Sign $0.441 + 0.897i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.654 + 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (1.33 − 2.92i)5-s + (−0.142 − 0.989i)6-s + (−0.959 − 0.281i)7-s + (−0.841 + 0.540i)8-s + (0.415 + 0.909i)9-s + (3.08 − 0.905i)10-s + (0.342 − 0.395i)11-s + (0.654 − 0.755i)12-s + (2.26 − 0.665i)13-s + (−0.415 − 0.909i)14-s + (−2.70 + 1.73i)15-s + (−0.959 − 0.281i)16-s + (−0.245 − 1.70i)17-s + ⋯
L(s)  = 1  + (0.463 + 0.534i)2-s + (−0.485 − 0.312i)3-s + (−0.0711 + 0.494i)4-s + (0.597 − 1.30i)5-s + (−0.0580 − 0.404i)6-s + (−0.362 − 0.106i)7-s + (−0.297 + 0.191i)8-s + (0.138 + 0.303i)9-s + (0.975 − 0.286i)10-s + (0.103 − 0.119i)11-s + (0.189 − 0.218i)12-s + (0.628 − 0.184i)13-s + (−0.111 − 0.243i)14-s + (−0.698 + 0.448i)15-s + (−0.239 − 0.0704i)16-s + (−0.0595 − 0.414i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.441 + 0.897i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.441 + 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $0.441 + 0.897i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (841, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 0.441 + 0.897i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.38604 - 0.862640i\)
\(L(\frac12)\) \(\approx\) \(1.38604 - 0.862640i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.654 - 0.755i)T \)
3 \( 1 + (0.841 + 0.540i)T \)
7 \( 1 + (0.959 + 0.281i)T \)
23 \( 1 + (1.43 + 4.57i)T \)
good5 \( 1 + (-1.33 + 2.92i)T + (-3.27 - 3.77i)T^{2} \)
11 \( 1 + (-0.342 + 0.395i)T + (-1.56 - 10.8i)T^{2} \)
13 \( 1 + (-2.26 + 0.665i)T + (10.9 - 7.02i)T^{2} \)
17 \( 1 + (0.245 + 1.70i)T + (-16.3 + 4.78i)T^{2} \)
19 \( 1 + (0.352 - 2.44i)T + (-18.2 - 5.35i)T^{2} \)
29 \( 1 + (1.42 + 9.91i)T + (-27.8 + 8.17i)T^{2} \)
31 \( 1 + (-0.758 + 0.487i)T + (12.8 - 28.1i)T^{2} \)
37 \( 1 + (4.75 + 10.4i)T + (-24.2 + 27.9i)T^{2} \)
41 \( 1 + (-0.284 + 0.623i)T + (-26.8 - 30.9i)T^{2} \)
43 \( 1 + (-3.90 - 2.50i)T + (17.8 + 39.1i)T^{2} \)
47 \( 1 - 11.0T + 47T^{2} \)
53 \( 1 + (5.93 + 1.74i)T + (44.5 + 28.6i)T^{2} \)
59 \( 1 + (8.73 - 2.56i)T + (49.6 - 31.8i)T^{2} \)
61 \( 1 + (-2.84 + 1.82i)T + (25.3 - 55.4i)T^{2} \)
67 \( 1 + (-2.26 - 2.60i)T + (-9.53 + 66.3i)T^{2} \)
71 \( 1 + (-2.29 - 2.64i)T + (-10.1 + 70.2i)T^{2} \)
73 \( 1 + (0.628 - 4.37i)T + (-70.0 - 20.5i)T^{2} \)
79 \( 1 + (6.83 - 2.00i)T + (66.4 - 42.7i)T^{2} \)
83 \( 1 + (-1.04 - 2.28i)T + (-54.3 + 62.7i)T^{2} \)
89 \( 1 + (-11.7 - 7.53i)T + (36.9 + 80.9i)T^{2} \)
97 \( 1 + (0.0992 - 0.217i)T + (-63.5 - 73.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.718073055014907783241493237920, −8.931673038064976156618710106907, −8.172091872286550427164699822395, −7.25267677958824403623926445572, −6.04372111962125325215636750661, −5.80480388983783430433622039149, −4.71556263790728047025971435535, −3.89395276698015213003915820784, −2.22424635114927333657324021649, −0.70633042776288307682152212120, 1.65497225412507060347797213922, 2.96653114129412250780611992339, 3.66989609067802434428217457355, 4.92298320024290498923863127044, 5.92435934014393947220043616796, 6.51243286703059223667160823516, 7.30549450269272672659123998012, 8.837993731454088967375731538666, 9.598187653685298430283923039432, 10.51193445512445949547884364614

Graph of the $Z$-function along the critical line