Properties

Label 2-966-23.8-c1-0-8
Degree $2$
Conductor $966$
Sign $0.995 - 0.0929i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.142 − 0.989i)2-s + (−0.415 − 0.909i)3-s + (−0.959 − 0.281i)4-s + (1.64 + 1.89i)5-s + (−0.959 + 0.281i)6-s + (−0.841 − 0.540i)7-s + (−0.415 + 0.909i)8-s + (−0.654 + 0.755i)9-s + (2.10 − 1.35i)10-s + (0.480 + 3.34i)11-s + (0.142 + 0.989i)12-s + (0.299 − 0.192i)13-s + (−0.654 + 0.755i)14-s + (1.04 − 2.28i)15-s + (0.841 + 0.540i)16-s + (−5.90 + 1.73i)17-s + ⋯
L(s)  = 1  + (0.100 − 0.699i)2-s + (−0.239 − 0.525i)3-s + (−0.479 − 0.140i)4-s + (0.734 + 0.847i)5-s + (−0.391 + 0.115i)6-s + (−0.317 − 0.204i)7-s + (−0.146 + 0.321i)8-s + (−0.218 + 0.251i)9-s + (0.667 − 0.428i)10-s + (0.144 + 1.00i)11-s + (0.0410 + 0.285i)12-s + (0.0831 − 0.0534i)13-s + (−0.175 + 0.201i)14-s + (0.268 − 0.588i)15-s + (0.210 + 0.135i)16-s + (−1.43 + 0.420i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 - 0.0929i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $0.995 - 0.0929i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 0.995 - 0.0929i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.44738 + 0.0673797i\)
\(L(\frac12)\) \(\approx\) \(1.44738 + 0.0673797i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.142 + 0.989i)T \)
3 \( 1 + (0.415 + 0.909i)T \)
7 \( 1 + (0.841 + 0.540i)T \)
23 \( 1 + (-0.948 - 4.70i)T \)
good5 \( 1 + (-1.64 - 1.89i)T + (-0.711 + 4.94i)T^{2} \)
11 \( 1 + (-0.480 - 3.34i)T + (-10.5 + 3.09i)T^{2} \)
13 \( 1 + (-0.299 + 0.192i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (5.90 - 1.73i)T + (14.3 - 9.19i)T^{2} \)
19 \( 1 + (-7.17 - 2.10i)T + (15.9 + 10.2i)T^{2} \)
29 \( 1 + (-4.93 + 1.44i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (2.68 - 5.87i)T + (-20.3 - 23.4i)T^{2} \)
37 \( 1 + (2.94 - 3.39i)T + (-5.26 - 36.6i)T^{2} \)
41 \( 1 + (-3.88 - 4.48i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (-0.138 - 0.303i)T + (-28.1 + 32.4i)T^{2} \)
47 \( 1 - 4.57T + 47T^{2} \)
53 \( 1 + (0.868 + 0.558i)T + (22.0 + 48.2i)T^{2} \)
59 \( 1 + (-4.45 + 2.86i)T + (24.5 - 53.6i)T^{2} \)
61 \( 1 + (-5.21 + 11.4i)T + (-39.9 - 46.1i)T^{2} \)
67 \( 1 + (-0.581 + 4.04i)T + (-64.2 - 18.8i)T^{2} \)
71 \( 1 + (1.72 - 11.9i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (-2.76 - 0.810i)T + (61.4 + 39.4i)T^{2} \)
79 \( 1 + (0.698 - 0.449i)T + (32.8 - 71.8i)T^{2} \)
83 \( 1 + (5.84 - 6.74i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (2.01 + 4.40i)T + (-58.2 + 67.2i)T^{2} \)
97 \( 1 + (8.92 + 10.3i)T + (-13.8 + 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.990360039799040213914488256032, −9.608782428500734895915303671102, −8.458937527674446786567415949737, −7.26000958434201071126972271627, −6.69608492891220667681779271145, −5.75260615497032491760316088245, −4.73316066337614224590051144123, −3.46116569690257496490151869997, −2.44959350683813394426825717988, −1.44146104357437530249590778392, 0.72149002261913543797052605064, 2.67345092900133493416340074469, 3.98791205032935635718196491515, 4.99393358105720970417156941660, 5.61501332625764775415397838228, 6.39857178150419094997709480496, 7.36566785904116658194864750064, 8.781262717728624264185356906013, 8.922870581997444026689027729211, 9.723564342658761358842819500249

Graph of the $Z$-function along the critical line