Properties

Label 2-966-23.2-c1-0-16
Degree $2$
Conductor $966$
Sign $0.998 - 0.0617i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.841 + 0.540i)2-s + (−0.142 − 0.989i)3-s + (0.415 + 0.909i)4-s + (1.61 + 0.474i)5-s + (0.415 − 0.909i)6-s + (0.654 − 0.755i)7-s + (−0.142 + 0.989i)8-s + (−0.959 + 0.281i)9-s + (1.10 + 1.27i)10-s + (2.58 − 1.66i)11-s + (0.841 − 0.540i)12-s + (−0.336 − 0.387i)13-s + (0.959 − 0.281i)14-s + (0.239 − 1.66i)15-s + (−0.654 + 0.755i)16-s + (0.715 − 1.56i)17-s + ⋯
L(s)  = 1  + (0.594 + 0.382i)2-s + (−0.0821 − 0.571i)3-s + (0.207 + 0.454i)4-s + (0.721 + 0.211i)5-s + (0.169 − 0.371i)6-s + (0.247 − 0.285i)7-s + (−0.0503 + 0.349i)8-s + (−0.319 + 0.0939i)9-s + (0.348 + 0.402i)10-s + (0.779 − 0.500i)11-s + (0.242 − 0.156i)12-s + (−0.0932 − 0.107i)13-s + (0.256 − 0.0752i)14-s + (0.0618 − 0.429i)15-s + (−0.163 + 0.188i)16-s + (0.173 − 0.380i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0617i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0617i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $0.998 - 0.0617i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (715, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 0.998 - 0.0617i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.62633 + 0.0812265i\)
\(L(\frac12)\) \(\approx\) \(2.62633 + 0.0812265i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.841 - 0.540i)T \)
3 \( 1 + (0.142 + 0.989i)T \)
7 \( 1 + (-0.654 + 0.755i)T \)
23 \( 1 + (-3.97 + 2.67i)T \)
good5 \( 1 + (-1.61 - 0.474i)T + (4.20 + 2.70i)T^{2} \)
11 \( 1 + (-2.58 + 1.66i)T + (4.56 - 10.0i)T^{2} \)
13 \( 1 + (0.336 + 0.387i)T + (-1.85 + 12.8i)T^{2} \)
17 \( 1 + (-0.715 + 1.56i)T + (-11.1 - 12.8i)T^{2} \)
19 \( 1 + (-2.77 - 6.08i)T + (-12.4 + 14.3i)T^{2} \)
29 \( 1 + (2.06 - 4.51i)T + (-18.9 - 21.9i)T^{2} \)
31 \( 1 + (-1.39 + 9.69i)T + (-29.7 - 8.73i)T^{2} \)
37 \( 1 + (-7.08 + 2.08i)T + (31.1 - 20.0i)T^{2} \)
41 \( 1 + (-2.95 - 0.867i)T + (34.4 + 22.1i)T^{2} \)
43 \( 1 + (-1.55 - 10.7i)T + (-41.2 + 12.1i)T^{2} \)
47 \( 1 + 8.20T + 47T^{2} \)
53 \( 1 + (4.33 - 5.00i)T + (-7.54 - 52.4i)T^{2} \)
59 \( 1 + (-1.74 - 2.01i)T + (-8.39 + 58.3i)T^{2} \)
61 \( 1 + (-1.01 + 7.09i)T + (-58.5 - 17.1i)T^{2} \)
67 \( 1 + (3.33 + 2.14i)T + (27.8 + 60.9i)T^{2} \)
71 \( 1 + (-2.49 - 1.60i)T + (29.4 + 64.5i)T^{2} \)
73 \( 1 + (2.40 + 5.25i)T + (-47.8 + 55.1i)T^{2} \)
79 \( 1 + (-4.25 - 4.91i)T + (-11.2 + 78.1i)T^{2} \)
83 \( 1 + (-0.867 + 0.254i)T + (69.8 - 44.8i)T^{2} \)
89 \( 1 + (1.44 + 10.0i)T + (-85.3 + 25.0i)T^{2} \)
97 \( 1 + (9.35 + 2.74i)T + (81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.945485926789459905563457513837, −9.209919803435948567194355915951, −8.022920780124578791258045175883, −7.49396732776953223673498143266, −6.30204597905486951743936845045, −6.01395997369167578585065094715, −4.90006091480479804239832300740, −3.74704765910515592585740880685, −2.62708571247102880160945875362, −1.30216757414511098351793687724, 1.40621135076618486855794110331, 2.63104669659323647506848429641, 3.76647378901073909725732444012, 4.82211186430914026339529506636, 5.39554867529649628006799101624, 6.38906055718000448827435215426, 7.28723585361094122758800215086, 8.675065023183406262481696420136, 9.428337250915469121336735076537, 9.896970150593072162056471437555

Graph of the $Z$-function along the critical line