Properties

Label 2-966-23.12-c1-0-16
Degree $2$
Conductor $966$
Sign $-0.354 + 0.934i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.841 − 0.540i)2-s + (−0.142 + 0.989i)3-s + (0.415 − 0.909i)4-s + (−3.15 + 0.927i)5-s + (0.415 + 0.909i)6-s + (0.654 + 0.755i)7-s + (−0.142 − 0.989i)8-s + (−0.959 − 0.281i)9-s + (−2.15 + 2.48i)10-s + (−3.69 − 2.37i)11-s + (0.841 + 0.540i)12-s + (4.43 − 5.12i)13-s + (0.959 + 0.281i)14-s + (−0.468 − 3.25i)15-s + (−0.654 − 0.755i)16-s + (0.187 + 0.410i)17-s + ⋯
L(s)  = 1  + (0.594 − 0.382i)2-s + (−0.0821 + 0.571i)3-s + (0.207 − 0.454i)4-s + (−1.41 + 0.414i)5-s + (0.169 + 0.371i)6-s + (0.247 + 0.285i)7-s + (−0.0503 − 0.349i)8-s + (−0.319 − 0.0939i)9-s + (−0.681 + 0.786i)10-s + (−1.11 − 0.716i)11-s + (0.242 + 0.156i)12-s + (1.23 − 1.42i)13-s + (0.256 + 0.0752i)14-s + (−0.120 − 0.841i)15-s + (−0.163 − 0.188i)16-s + (0.0454 + 0.0994i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.354 + 0.934i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.354 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $-0.354 + 0.934i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ -0.354 + 0.934i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.580783 - 0.841737i\)
\(L(\frac12)\) \(\approx\) \(0.580783 - 0.841737i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.841 + 0.540i)T \)
3 \( 1 + (0.142 - 0.989i)T \)
7 \( 1 + (-0.654 - 0.755i)T \)
23 \( 1 + (3.73 - 3.00i)T \)
good5 \( 1 + (3.15 - 0.927i)T + (4.20 - 2.70i)T^{2} \)
11 \( 1 + (3.69 + 2.37i)T + (4.56 + 10.0i)T^{2} \)
13 \( 1 + (-4.43 + 5.12i)T + (-1.85 - 12.8i)T^{2} \)
17 \( 1 + (-0.187 - 0.410i)T + (-11.1 + 12.8i)T^{2} \)
19 \( 1 + (-0.658 + 1.44i)T + (-12.4 - 14.3i)T^{2} \)
29 \( 1 + (1.91 + 4.18i)T + (-18.9 + 21.9i)T^{2} \)
31 \( 1 + (1.15 + 8.00i)T + (-29.7 + 8.73i)T^{2} \)
37 \( 1 + (4.51 + 1.32i)T + (31.1 + 20.0i)T^{2} \)
41 \( 1 + (-6.60 + 1.94i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (-1.86 + 12.9i)T + (-41.2 - 12.1i)T^{2} \)
47 \( 1 - 3.05T + 47T^{2} \)
53 \( 1 + (3.67 + 4.24i)T + (-7.54 + 52.4i)T^{2} \)
59 \( 1 + (-1.03 + 1.19i)T + (-8.39 - 58.3i)T^{2} \)
61 \( 1 + (-0.595 - 4.14i)T + (-58.5 + 17.1i)T^{2} \)
67 \( 1 + (8.79 - 5.65i)T + (27.8 - 60.9i)T^{2} \)
71 \( 1 + (4.69 - 3.01i)T + (29.4 - 64.5i)T^{2} \)
73 \( 1 + (6.28 - 13.7i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (0.992 - 1.14i)T + (-11.2 - 78.1i)T^{2} \)
83 \( 1 + (-0.566 - 0.166i)T + (69.8 + 44.8i)T^{2} \)
89 \( 1 + (-1.79 + 12.4i)T + (-85.3 - 25.0i)T^{2} \)
97 \( 1 + (9.89 - 2.90i)T + (81.6 - 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18451779895186390122567388965, −8.818865447558243013207057564211, −8.035494099565650220810241740684, −7.44231276220404889380925976440, −5.85279385904709001736359673989, −5.48585264179385678084075795395, −4.10000541458569352914400210667, −3.56410144748514439905639101499, −2.63032288221616276761162524645, −0.39677549621598553728771960142, 1.59379723761980692307581303036, 3.19183267511649643033139920160, 4.25536184825219428714520483375, 4.81357514502098109157614788823, 6.07361383577910065531034608754, 7.00511320431518081503143622930, 7.69056277709896379007462429841, 8.273897547046813962286147963730, 9.116418073751440649647344733584, 10.63403780151639600715010500236

Graph of the $Z$-function along the critical line