Properties

Label 8-966e4-1.1-c1e4-0-3
Degree $8$
Conductor $870780120336$
Sign $1$
Analytic cond. $3540.11$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 8·7-s − 6·9-s + 3·16-s − 14·25-s − 16·28-s + 12·36-s − 20·37-s + 4·43-s + 34·49-s − 48·63-s − 4·64-s − 16·67-s − 40·79-s + 27·81-s + 28·100-s − 44·109-s + 24·112-s + 44·121-s + 127-s + 131-s + 137-s + 139-s − 18·144-s + 40·148-s + 149-s + 151-s + ⋯
L(s)  = 1  − 4-s + 3.02·7-s − 2·9-s + 3/4·16-s − 2.79·25-s − 3.02·28-s + 2·36-s − 3.28·37-s + 0.609·43-s + 34/7·49-s − 6.04·63-s − 1/2·64-s − 1.95·67-s − 4.50·79-s + 3·81-s + 14/5·100-s − 4.21·109-s + 2.26·112-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3/2·144-s + 3.28·148-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(3540.11\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 23^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7325955753\)
\(L(\frac12)\) \(\approx\) \(0.7325955753\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 23 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 65 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 19 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 154 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 166 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 47 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.16949163931782490797876191436, −7.07850844113640493192684156298, −6.91344075164067255780572869869, −6.53404776537550041285097144429, −5.91256506288248726423754190319, −5.78645971627265223780756967034, −5.72506712664060025412618134921, −5.66270869606066797162219548838, −5.41047220927664224654783423445, −5.23821865220766797978184886809, −4.70410686785791610149054076297, −4.63962469859591386777720407666, −4.36385820630834318864349436907, −4.26457950349936962349319360799, −4.09279397665848444004050171896, −3.35507946680618720705136800393, −3.29809003246557298704333918087, −3.26446235748117919696487282760, −2.71769643105006620142910272785, −2.18792019972323632835572394809, −1.96982109007826850296924808870, −1.73782153158932564270454481239, −1.57283219389787322956873686084, −0.883621022569072292952080935504, −0.22201275981737702551831725562, 0.22201275981737702551831725562, 0.883621022569072292952080935504, 1.57283219389787322956873686084, 1.73782153158932564270454481239, 1.96982109007826850296924808870, 2.18792019972323632835572394809, 2.71769643105006620142910272785, 3.26446235748117919696487282760, 3.29809003246557298704333918087, 3.35507946680618720705136800393, 4.09279397665848444004050171896, 4.26457950349936962349319360799, 4.36385820630834318864349436907, 4.63962469859591386777720407666, 4.70410686785791610149054076297, 5.23821865220766797978184886809, 5.41047220927664224654783423445, 5.66270869606066797162219548838, 5.72506712664060025412618134921, 5.78645971627265223780756967034, 5.91256506288248726423754190319, 6.53404776537550041285097144429, 6.91344075164067255780572869869, 7.07850844113640493192684156298, 7.16949163931782490797876191436

Graph of the $Z$-function along the critical line