L(s) = 1 | + (−1.67 − 1.21i)2-s + (1.95 + 0.870i)3-s + (0.708 + 2.18i)4-s + (−1.17 + 2.03i)5-s + (−2.21 − 3.83i)6-s + (−2.45 + 2.73i)7-s + (0.188 − 0.578i)8-s + (1.05 + 1.17i)9-s + (4.44 − 1.97i)10-s + (−4.18 − 0.889i)11-s + (−0.512 + 4.88i)12-s + (−0.218 − 2.07i)13-s + (7.44 − 1.58i)14-s + (−4.06 + 2.95i)15-s + (2.69 − 1.95i)16-s + (2.08 − 0.442i)17-s + ⋯ |
L(s) = 1 | + (−1.18 − 0.861i)2-s + (1.12 + 0.502i)3-s + (0.354 + 1.09i)4-s + (−0.525 + 0.909i)5-s + (−0.904 − 1.56i)6-s + (−0.929 + 1.03i)7-s + (0.0664 − 0.204i)8-s + (0.351 + 0.390i)9-s + (1.40 − 0.625i)10-s + (−1.26 − 0.268i)11-s + (−0.148 + 1.40i)12-s + (−0.0605 − 0.575i)13-s + (1.99 − 0.423i)14-s + (−1.04 + 0.762i)15-s + (0.672 − 0.488i)16-s + (0.504 − 0.107i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.175i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.984 + 0.175i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.000799630 - 0.00901860i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.000799630 - 0.00901860i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (1.67 + 1.21i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (-1.95 - 0.870i)T + (2.00 + 2.22i)T^{2} \) |
| 5 | \( 1 + (1.17 - 2.03i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2.45 - 2.73i)T + (-0.731 - 6.96i)T^{2} \) |
| 11 | \( 1 + (4.18 + 0.889i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (0.218 + 2.07i)T + (-12.7 + 2.70i)T^{2} \) |
| 17 | \( 1 + (-2.08 + 0.442i)T + (15.5 - 6.91i)T^{2} \) |
| 19 | \( 1 + (-0.0648 + 0.616i)T + (-18.5 - 3.95i)T^{2} \) |
| 23 | \( 1 + (-1.03 + 3.18i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (1.11 + 0.809i)T + (8.96 + 27.5i)T^{2} \) |
| 37 | \( 1 + (-0.137 - 0.237i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.90 - 1.73i)T + (27.4 - 30.4i)T^{2} \) |
| 43 | \( 1 + (-0.0281 + 0.268i)T + (-42.0 - 8.94i)T^{2} \) |
| 47 | \( 1 + (4.35 - 3.16i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (6.36 + 7.06i)T + (-5.54 + 52.7i)T^{2} \) |
| 59 | \( 1 + (5.32 + 2.37i)T + (39.4 + 43.8i)T^{2} \) |
| 61 | \( 1 + 2.22T + 61T^{2} \) |
| 67 | \( 1 + (-6.80 + 11.7i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.893 + 0.992i)T + (-7.42 + 70.6i)T^{2} \) |
| 73 | \( 1 + (13.8 + 2.94i)T + (66.6 + 29.6i)T^{2} \) |
| 79 | \( 1 + (-8.48 + 1.80i)T + (72.1 - 32.1i)T^{2} \) |
| 83 | \( 1 + (-4.73 + 2.10i)T + (55.5 - 61.6i)T^{2} \) |
| 89 | \( 1 + (1.54 + 4.76i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-2.07 - 6.38i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.585573357112672541266797003965, −9.031973225407497064676848024122, −8.120025375603606173255470124029, −7.75833775038761584780917894554, −6.38831031570023644717717181183, −5.19421579084647065643620429602, −3.33959779444921228160565623486, −3.03895389928699925826652887686, −2.33586002978878400633317908186, −0.00539520466278984601656687743,
1.40001502087530718483431584353, 3.04363984143525257197168734658, 4.07550105687259232044923330339, 5.42669390947107612325876910136, 6.74615344128862161710012505302, 7.40841325546332541259596470559, 7.926652158723029374498367394748, 8.546686535709306015951438035497, 9.342759419865171560202635784832, 9.957034150562003006667357668943