L(s) = 1 | + (−1.02 − 0.744i)2-s + (−1.35 − 0.603i)3-s + (−0.122 − 0.376i)4-s + (1.90 − 3.29i)5-s + (0.940 + 1.62i)6-s + (1.46 − 1.62i)7-s + (−0.937 + 2.88i)8-s + (−0.533 − 0.592i)9-s + (−4.39 + 1.95i)10-s + (−0.929 − 0.197i)11-s + (−0.0613 + 0.584i)12-s + (0.0175 + 0.167i)13-s + (−2.71 + 0.576i)14-s + (−4.56 + 3.31i)15-s + (2.46 − 1.79i)16-s + (−6.43 + 1.36i)17-s + ⋯ |
L(s) = 1 | + (−0.724 − 0.526i)2-s + (−0.782 − 0.348i)3-s + (−0.0611 − 0.188i)4-s + (0.849 − 1.47i)5-s + (0.383 + 0.664i)6-s + (0.553 − 0.614i)7-s + (−0.331 + 1.02i)8-s + (−0.177 − 0.197i)9-s + (−1.39 + 0.619i)10-s + (−0.280 − 0.0595i)11-s + (−0.0177 + 0.168i)12-s + (0.00487 + 0.0463i)13-s + (−0.724 + 0.154i)14-s + (−1.17 + 0.856i)15-s + (0.617 − 0.448i)16-s + (−1.56 + 0.331i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.418 - 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.418 - 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.284414 + 0.444056i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.284414 + 0.444056i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (1.02 + 0.744i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (1.35 + 0.603i)T + (2.00 + 2.22i)T^{2} \) |
| 5 | \( 1 + (-1.90 + 3.29i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.46 + 1.62i)T + (-0.731 - 6.96i)T^{2} \) |
| 11 | \( 1 + (0.929 + 0.197i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (-0.0175 - 0.167i)T + (-12.7 + 2.70i)T^{2} \) |
| 17 | \( 1 + (6.43 - 1.36i)T + (15.5 - 6.91i)T^{2} \) |
| 19 | \( 1 + (-0.120 + 1.14i)T + (-18.5 - 3.95i)T^{2} \) |
| 23 | \( 1 + (-1.43 + 4.40i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-1.08 - 0.785i)T + (8.96 + 27.5i)T^{2} \) |
| 37 | \( 1 + (1.93 + 3.35i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.299 + 0.133i)T + (27.4 - 30.4i)T^{2} \) |
| 43 | \( 1 + (-1.00 + 9.57i)T + (-42.0 - 8.94i)T^{2} \) |
| 47 | \( 1 + (4.56 - 3.31i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-4.90 - 5.44i)T + (-5.54 + 52.7i)T^{2} \) |
| 59 | \( 1 + (2.42 + 1.07i)T + (39.4 + 43.8i)T^{2} \) |
| 61 | \( 1 - 1.74T + 61T^{2} \) |
| 67 | \( 1 + (0.276 - 0.478i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.760 - 0.844i)T + (-7.42 + 70.6i)T^{2} \) |
| 73 | \( 1 + (7.74 + 1.64i)T + (66.6 + 29.6i)T^{2} \) |
| 79 | \( 1 + (-4.44 + 0.944i)T + (72.1 - 32.1i)T^{2} \) |
| 83 | \( 1 + (0.298 - 0.132i)T + (55.5 - 61.6i)T^{2} \) |
| 89 | \( 1 + (-4.54 - 13.9i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-4.79 - 14.7i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.270668427917456273606031071621, −8.910688889736165981822451728675, −8.161112388640195900697741032180, −6.78251507775457179367180647015, −5.86616944578993897379910382975, −5.12676785352398802607071224732, −4.41685871617348188205767081671, −2.28633066734431371833677633384, −1.27753564718423573256502125859, −0.36510858813843074723167484179,
2.15348967293802311576031020395, 3.18409150264322877628392313302, 4.67358055381733514108467750347, 5.69943340511146620100669128405, 6.42799398314418695766419445065, 7.11984225336963655773309221855, 8.077167038503805113081613705551, 8.944974513432220833154137624411, 9.835772851114916669370412647135, 10.43393949036625728999525085153