Properties

Label 2-31e2-1.1-c1-0-58
Degree $2$
Conductor $961$
Sign $-1$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.26·2-s + 1.48·3-s − 0.395·4-s − 3.80·5-s + 1.88·6-s + 2.18·7-s − 3.03·8-s − 0.796·9-s − 4.81·10-s − 0.950·11-s − 0.587·12-s + 0.168·13-s + 2.77·14-s − 5.64·15-s − 3.05·16-s − 6.57·17-s − 1.00·18-s − 1.15·19-s + 1.50·20-s + 3.24·21-s − 1.20·22-s − 4.62·23-s − 4.50·24-s + 9.44·25-s + 0.212·26-s − 5.63·27-s − 0.866·28-s + ⋯
L(s)  = 1  + 0.895·2-s + 0.856·3-s − 0.197·4-s − 1.69·5-s + 0.767·6-s + 0.827·7-s − 1.07·8-s − 0.265·9-s − 1.52·10-s − 0.286·11-s − 0.169·12-s + 0.0466·13-s + 0.741·14-s − 1.45·15-s − 0.762·16-s − 1.59·17-s − 0.237·18-s − 0.264·19-s + 0.336·20-s + 0.709·21-s − 0.256·22-s − 0.965·23-s − 0.919·24-s + 1.88·25-s + 0.0417·26-s − 1.08·27-s − 0.163·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-1$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 - 1.26T + 2T^{2} \)
3 \( 1 - 1.48T + 3T^{2} \)
5 \( 1 + 3.80T + 5T^{2} \)
7 \( 1 - 2.18T + 7T^{2} \)
11 \( 1 + 0.950T + 11T^{2} \)
13 \( 1 - 0.168T + 13T^{2} \)
17 \( 1 + 6.57T + 17T^{2} \)
19 \( 1 + 1.15T + 19T^{2} \)
23 \( 1 + 4.62T + 23T^{2} \)
29 \( 1 - 1.33T + 29T^{2} \)
37 \( 1 + 3.87T + 37T^{2} \)
41 \( 1 - 0.328T + 41T^{2} \)
43 \( 1 - 9.63T + 43T^{2} \)
47 \( 1 - 5.63T + 47T^{2} \)
53 \( 1 + 7.33T + 53T^{2} \)
59 \( 1 + 2.65T + 59T^{2} \)
61 \( 1 + 1.74T + 61T^{2} \)
67 \( 1 - 0.552T + 67T^{2} \)
71 \( 1 - 1.13T + 71T^{2} \)
73 \( 1 + 7.92T + 73T^{2} \)
79 \( 1 - 4.54T + 79T^{2} \)
83 \( 1 - 0.326T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 - 15.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.258806756113854798518371431900, −8.543788303487334718790899149991, −8.115241750757262882905176500292, −7.25153795984165652669876994301, −6.01420135431508684921074847085, −4.75635777463472870802826509276, −4.23105578159503209608378092609, −3.44517747570623331972260076133, −2.39710487264412169029959229348, 0, 2.39710487264412169029959229348, 3.44517747570623331972260076133, 4.23105578159503209608378092609, 4.75635777463472870802826509276, 6.01420135431508684921074847085, 7.25153795984165652669876994301, 8.115241750757262882905176500292, 8.543788303487334718790899149991, 9.258806756113854798518371431900

Graph of the $Z$-function along the critical line