Properties

Label 2-31e2-1.1-c1-0-33
Degree $2$
Conductor $961$
Sign $-1$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.351·2-s − 2.89·3-s − 1.87·4-s + 2.97·5-s − 1.01·6-s − 1.08·7-s − 1.36·8-s + 5.37·9-s + 1.04·10-s − 2.43·11-s + 5.42·12-s + 2.87·13-s − 0.380·14-s − 8.60·15-s + 3.27·16-s − 1.82·17-s + 1.88·18-s + 2.11·19-s − 5.57·20-s + 3.13·21-s − 0.854·22-s − 0.442·23-s + 3.94·24-s + 3.84·25-s + 1.00·26-s − 6.86·27-s + 2.03·28-s + ⋯
L(s)  = 1  + 0.248·2-s − 1.67·3-s − 0.938·4-s + 1.32·5-s − 0.415·6-s − 0.409·7-s − 0.481·8-s + 1.79·9-s + 0.330·10-s − 0.733·11-s + 1.56·12-s + 0.797·13-s − 0.101·14-s − 2.22·15-s + 0.818·16-s − 0.442·17-s + 0.444·18-s + 0.485·19-s − 1.24·20-s + 0.683·21-s − 0.182·22-s − 0.0922·23-s + 0.804·24-s + 0.768·25-s + 0.198·26-s − 1.32·27-s + 0.383·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-1$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 - 0.351T + 2T^{2} \)
3 \( 1 + 2.89T + 3T^{2} \)
5 \( 1 - 2.97T + 5T^{2} \)
7 \( 1 + 1.08T + 7T^{2} \)
11 \( 1 + 2.43T + 11T^{2} \)
13 \( 1 - 2.87T + 13T^{2} \)
17 \( 1 + 1.82T + 17T^{2} \)
19 \( 1 - 2.11T + 19T^{2} \)
23 \( 1 + 0.442T + 23T^{2} \)
29 \( 1 + 3.15T + 29T^{2} \)
37 \( 1 - 3.14T + 37T^{2} \)
41 \( 1 + 6.94T + 41T^{2} \)
43 \( 1 + 8.41T + 43T^{2} \)
47 \( 1 + 7.96T + 47T^{2} \)
53 \( 1 + 4.97T + 53T^{2} \)
59 \( 1 + 12.0T + 59T^{2} \)
61 \( 1 + 14.4T + 61T^{2} \)
67 \( 1 + 6.43T + 67T^{2} \)
71 \( 1 - 1.67T + 71T^{2} \)
73 \( 1 - 14.3T + 73T^{2} \)
79 \( 1 + 3.44T + 79T^{2} \)
83 \( 1 - 12.8T + 83T^{2} \)
89 \( 1 - 2.25T + 89T^{2} \)
97 \( 1 - 3.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.785759918134305489468905270899, −9.106566085501888145015611426391, −7.87948169211071985948804159612, −6.43796728442677879712916188352, −6.12017979766790521169203946941, −5.23145597385969311379387948193, −4.76215951198312336723481108109, −3.34003095594142756711301675214, −1.53693472626597640772997237449, 0, 1.53693472626597640772997237449, 3.34003095594142756711301675214, 4.76215951198312336723481108109, 5.23145597385969311379387948193, 6.12017979766790521169203946941, 6.43796728442677879712916188352, 7.87948169211071985948804159612, 9.106566085501888145015611426391, 9.785759918134305489468905270899

Graph of the $Z$-function along the critical line