Properties

Label 2-9600-1.1-c1-0-95
Degree $2$
Conductor $9600$
Sign $-1$
Analytic cond. $76.6563$
Root an. cond. $8.75536$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s − 4·11-s − 2·13-s + 2·17-s − 8·19-s − 2·21-s + 4·23-s − 27-s + 6·31-s + 4·33-s + 2·37-s + 2·39-s + 6·41-s + 4·47-s − 3·49-s − 2·51-s + 8·57-s + 4·59-s + 14·61-s + 2·63-s + 4·67-s − 4·69-s − 12·71-s + 10·73-s − 8·77-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s − 1.20·11-s − 0.554·13-s + 0.485·17-s − 1.83·19-s − 0.436·21-s + 0.834·23-s − 0.192·27-s + 1.07·31-s + 0.696·33-s + 0.328·37-s + 0.320·39-s + 0.937·41-s + 0.583·47-s − 3/7·49-s − 0.280·51-s + 1.05·57-s + 0.520·59-s + 1.79·61-s + 0.251·63-s + 0.488·67-s − 0.481·69-s − 1.42·71-s + 1.17·73-s − 0.911·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9600\)    =    \(2^{7} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(76.6563\)
Root analytic conductor: \(8.75536\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.27427739257753081795590124388, −6.73736325834322400975552276771, −5.83485622447487237105598330171, −5.30922926633619698349818577199, −4.61836998817002689559950119242, −4.10164552347181392750315256357, −2.81220284738257297236567344088, −2.24861824058214226101578443816, −1.12672878009576529056910213451, 0, 1.12672878009576529056910213451, 2.24861824058214226101578443816, 2.81220284738257297236567344088, 4.10164552347181392750315256357, 4.61836998817002689559950119242, 5.30922926633619698349818577199, 5.83485622447487237105598330171, 6.73736325834322400975552276771, 7.27427739257753081795590124388

Graph of the $Z$-function along the critical line