Properties

Label 8-960e4-1.1-c2e4-0-3
Degree $8$
Conductor $849346560000$
Sign $1$
Analytic cond. $468193.$
Root an. cond. $5.11449$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·9-s − 50·25-s − 144·29-s + 72·41-s + 20·49-s + 296·61-s + 27·81-s + 72·89-s − 144·101-s − 104·109-s + 268·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 28·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 2/3·9-s − 2·25-s − 4.96·29-s + 1.75·41-s + 0.408·49-s + 4.85·61-s + 1/3·81-s + 0.808·89-s − 1.42·101-s − 0.954·109-s + 2.21·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.165·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(468193.\)
Root analytic conductor: \(5.11449\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7781233972\)
\(L(\frac12)\) \(\approx\) \(0.7781233972\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 - 10 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 134 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 478 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 530 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 1010 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 36 T + p^{2} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 1874 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 178 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 18 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 3266 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
53$C_2^2$ \( ( 1 - 4942 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 5990 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 74 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 7250 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 718 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 9362 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 4370 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 5666 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 18 T + p^{2} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 13634 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.02296948193864081245242545617, −6.79254761920747454071435528452, −6.63036196107310203467228732836, −6.30055371753355314058630773945, −5.88177630943575908524729801212, −5.72957608371297792952821657852, −5.60467604366984907486545822971, −5.59014390618975757554875717084, −5.23686464897032305053045865667, −4.96666397511866811299819884950, −4.51550869231076721634850722952, −4.33392738028215068882207461963, −3.95112752236971144011578563588, −3.88193388633757651489564683164, −3.82634061070980053772342529961, −3.39854392845080213094766336230, −3.22160525526512845722656753553, −2.65792896148239648001035362452, −2.33010697967007716358992504207, −2.04674659355823915829253314929, −1.84753715509971178583210598063, −1.76423393508129699424519992716, −0.952697880073195944485700767324, −0.78196805635026846277212599965, −0.14230542934188463885537818562, 0.14230542934188463885537818562, 0.78196805635026846277212599965, 0.952697880073195944485700767324, 1.76423393508129699424519992716, 1.84753715509971178583210598063, 2.04674659355823915829253314929, 2.33010697967007716358992504207, 2.65792896148239648001035362452, 3.22160525526512845722656753553, 3.39854392845080213094766336230, 3.82634061070980053772342529961, 3.88193388633757651489564683164, 3.95112752236971144011578563588, 4.33392738028215068882207461963, 4.51550869231076721634850722952, 4.96666397511866811299819884950, 5.23686464897032305053045865667, 5.59014390618975757554875717084, 5.60467604366984907486545822971, 5.72957608371297792952821657852, 5.88177630943575908524729801212, 6.30055371753355314058630773945, 6.63036196107310203467228732836, 6.79254761920747454071435528452, 7.02296948193864081245242545617

Graph of the $Z$-function along the critical line