Properties

Label 8-960e4-1.1-c1e4-0-8
Degree $8$
Conductor $849346560000$
Sign $1$
Analytic cond. $3452.97$
Root an. cond. $2.76868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 2·9-s + 10·25-s − 8·29-s + 8·45-s + 20·49-s − 40·53-s + 40·73-s − 5·81-s − 56·97-s − 72·101-s + 36·121-s + 20·125-s + 127-s + 131-s + 137-s + 139-s − 32·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 36·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 1.78·5-s + 2/3·9-s + 2·25-s − 1.48·29-s + 1.19·45-s + 20/7·49-s − 5.49·53-s + 4.68·73-s − 5/9·81-s − 5.68·97-s − 7.16·101-s + 3.27·121-s + 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.65·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(3452.97\)
Root analytic conductor: \(2.76868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.030257180\)
\(L(\frac12)\) \(\approx\) \(3.030257180\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_1$ \( ( 1 - T )^{4} \)
good7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 66 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 126 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 154 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 162 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2}( 1 + 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.03874145813198253572189832688, −6.98577340369585245011517830498, −6.75317446075505545598636591550, −6.57698658021947336667412588707, −6.25484136016154671241610743164, −6.05365236704014094228295004864, −5.68627750473301771784588732821, −5.55446343215885711025605926362, −5.54201223340379940156585743444, −5.24880537936223523427300262249, −4.79649688976664199970180325729, −4.73114161479892060249917934667, −4.35444004662881801739351583015, −4.21931667394107737464662669414, −3.79931467082068675718163889788, −3.53868158663068580108511800570, −3.37000754329997649828098296909, −2.88159624100861602716160471689, −2.55123815164734002069201417128, −2.48108612847455312881335281237, −2.08786402445296695303455307735, −1.60185406474535819252373424464, −1.40816925304107073261244093385, −1.27478694381970216509052049936, −0.36775195076258271793733122621, 0.36775195076258271793733122621, 1.27478694381970216509052049936, 1.40816925304107073261244093385, 1.60185406474535819252373424464, 2.08786402445296695303455307735, 2.48108612847455312881335281237, 2.55123815164734002069201417128, 2.88159624100861602716160471689, 3.37000754329997649828098296909, 3.53868158663068580108511800570, 3.79931467082068675718163889788, 4.21931667394107737464662669414, 4.35444004662881801739351583015, 4.73114161479892060249917934667, 4.79649688976664199970180325729, 5.24880537936223523427300262249, 5.54201223340379940156585743444, 5.55446343215885711025605926362, 5.68627750473301771784588732821, 6.05365236704014094228295004864, 6.25484136016154671241610743164, 6.57698658021947336667412588707, 6.75317446075505545598636591550, 6.98577340369585245011517830498, 7.03874145813198253572189832688

Graph of the $Z$-function along the critical line