Properties

Label 8-960e4-1.1-c1e4-0-26
Degree $8$
Conductor $849346560000$
Sign $1$
Analytic cond. $3452.97$
Root an. cond. $2.76868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 2·9-s + 10·25-s + 8·29-s − 8·45-s + 20·49-s + 40·53-s + 40·73-s − 5·81-s − 56·97-s + 72·101-s + 36·121-s − 20·125-s + 127-s + 131-s + 137-s + 139-s − 32·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 36·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1.78·5-s + 2/3·9-s + 2·25-s + 1.48·29-s − 1.19·45-s + 20/7·49-s + 5.49·53-s + 4.68·73-s − 5/9·81-s − 5.68·97-s + 7.16·101-s + 3.27·121-s − 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.65·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(3452.97\)
Root analytic conductor: \(2.76868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.030257180\)
\(L(\frac12)\) \(\approx\) \(3.030257180\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_1$ \( ( 1 + T )^{4} \)
good7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 66 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 126 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 154 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 162 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2}( 1 + 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29584987942659229016975095373, −6.97651921962516698362626666600, −6.79581718641471765254153249095, −6.67673581016367996044427030021, −6.48390110024736871843362987081, −5.88123190369505150680465961096, −5.86702529935699244285319371130, −5.52085984458008069685902947328, −5.45440562769254213522818430190, −4.91146767554922102664139625577, −4.87969923338213709674395187584, −4.62127726278236608139524778222, −4.18804273383760282128669719657, −4.09208062943069456411733875549, −3.85774180610164283782017407454, −3.75427453299980610537228553763, −3.41293620261775500232256219069, −3.05328334719730069449245723287, −2.71922365485351590949553886827, −2.35750430592623377881582532157, −2.24032569123476888842818649292, −1.81745722432679392517838421018, −1.00505730797205185834451090327, −0.76152721493161220013518120062, −0.67142849882816230004825533660, 0.67142849882816230004825533660, 0.76152721493161220013518120062, 1.00505730797205185834451090327, 1.81745722432679392517838421018, 2.24032569123476888842818649292, 2.35750430592623377881582532157, 2.71922365485351590949553886827, 3.05328334719730069449245723287, 3.41293620261775500232256219069, 3.75427453299980610537228553763, 3.85774180610164283782017407454, 4.09208062943069456411733875549, 4.18804273383760282128669719657, 4.62127726278236608139524778222, 4.87969923338213709674395187584, 4.91146767554922102664139625577, 5.45440562769254213522818430190, 5.52085984458008069685902947328, 5.86702529935699244285319371130, 5.88123190369505150680465961096, 6.48390110024736871843362987081, 6.67673581016367996044427030021, 6.79581718641471765254153249095, 6.97651921962516698362626666600, 7.29584987942659229016975095373

Graph of the $Z$-function along the critical line