Properties

Label 16-9522e8-1.1-c1e8-0-0
Degree $16$
Conductor $6.758\times 10^{31}$
Sign $1$
Analytic cond. $1.11697\times 10^{15}$
Root an. cond. $8.71972$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 36·4-s − 120·8-s + 12·13-s + 330·16-s − 4·25-s − 96·26-s − 792·32-s − 12·41-s + 12·47-s − 12·49-s + 32·50-s + 432·52-s − 24·59-s + 1.71e3·64-s + 12·71-s + 12·73-s + 96·82-s − 96·94-s + 96·98-s − 144·100-s − 60·101-s − 1.44e3·104-s + 192·118-s − 64·121-s + 127-s − 3.43e3·128-s + ⋯
L(s)  = 1  − 5.65·2-s + 18·4-s − 42.4·8-s + 3.32·13-s + 82.5·16-s − 4/5·25-s − 18.8·26-s − 140.·32-s − 1.87·41-s + 1.75·47-s − 1.71·49-s + 4.52·50-s + 59.9·52-s − 3.12·59-s + 214.5·64-s + 1.42·71-s + 1.40·73-s + 10.6·82-s − 9.90·94-s + 9.69·98-s − 14.3·100-s − 5.97·101-s − 141.·104-s + 17.6·118-s − 5.81·121-s + 0.0887·127-s − 303.·128-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 23^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 23^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{16} \cdot 23^{16}\)
Sign: $1$
Analytic conductor: \(1.11697\times 10^{15}\)
Root analytic conductor: \(8.71972\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{16} \cdot 23^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1865552089\)
\(L(\frac12)\) \(\approx\) \(0.1865552089\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T )^{8} \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + 4 T^{2} + 37 T^{4} + 256 T^{6} + 604 T^{8} + 256 p^{2} T^{10} + 37 p^{4} T^{12} + 4 p^{6} T^{14} + p^{8} T^{16} \)
7 \( 1 + 12 T^{2} + 184 T^{4} + 1380 T^{6} + 12462 T^{8} + 1380 p^{2} T^{10} + 184 p^{4} T^{12} + 12 p^{6} T^{14} + p^{8} T^{16} \)
11 \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{4} \)
13 \( ( 1 - 6 T + 49 T^{2} - 186 T^{3} + 888 T^{4} - 186 p T^{5} + 49 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
17 \( 1 + 40 T^{2} + 1201 T^{4} + 23296 T^{6} + 449200 T^{8} + 23296 p^{2} T^{10} + 1201 p^{4} T^{12} + 40 p^{6} T^{14} + p^{8} T^{16} \)
19 \( 1 + 96 T^{2} + 4801 T^{4} + 154344 T^{6} + 3476352 T^{8} + 154344 p^{2} T^{10} + 4801 p^{4} T^{12} + 96 p^{6} T^{14} + p^{8} T^{16} \)
29 \( ( 1 + 53 T^{2} + 252 T^{3} + 1128 T^{4} + 252 p T^{5} + 53 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{4} \)
37 \( 1 + 252 T^{2} + 29224 T^{4} + 2026740 T^{6} + 91751982 T^{8} + 2026740 p^{2} T^{10} + 29224 p^{4} T^{12} + 252 p^{6} T^{14} + p^{8} T^{16} \)
41 \( ( 1 + 6 T + 113 T^{2} + 594 T^{3} + 6288 T^{4} + 594 p T^{5} + 113 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
43 \( 1 + 180 T^{2} + 15013 T^{4} + 833688 T^{6} + 37994988 T^{8} + 833688 p^{2} T^{10} + 15013 p^{4} T^{12} + 180 p^{6} T^{14} + p^{8} T^{16} \)
47 \( ( 1 - 6 T + 134 T^{2} - 462 T^{3} + 7626 T^{4} - 462 p T^{5} + 134 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
53 \( 1 + 292 T^{2} + 41509 T^{4} + 3749776 T^{6} + 235524844 T^{8} + 3749776 p^{2} T^{10} + 41509 p^{4} T^{12} + 292 p^{6} T^{14} + p^{8} T^{16} \)
59 \( ( 1 + 12 T + 203 T^{2} + 2130 T^{3} + 16998 T^{4} + 2130 p T^{5} + 203 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
61 \( 1 - 84 T^{2} + 7021 T^{4} - 311976 T^{6} + 27304092 T^{8} - 311976 p^{2} T^{10} + 7021 p^{4} T^{12} - 84 p^{6} T^{14} + p^{8} T^{16} \)
67 \( 1 + 420 T^{2} + 82309 T^{4} + 9879864 T^{6} + 797308668 T^{8} + 9879864 p^{2} T^{10} + 82309 p^{4} T^{12} + 420 p^{6} T^{14} + p^{8} T^{16} \)
71 \( ( 1 - 6 T + 38 T^{2} - 534 T^{3} + 11178 T^{4} - 534 p T^{5} + 38 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 6 T + 130 T^{2} - 1584 T^{3} + 9615 T^{4} - 1584 p T^{5} + 130 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
79 \( 1 + 168 T^{2} + 14476 T^{4} + 631512 T^{6} + 29280102 T^{8} + 631512 p^{2} T^{10} + 14476 p^{4} T^{12} + 168 p^{6} T^{14} + p^{8} T^{16} \)
83 \( 1 + 580 T^{2} + 153349 T^{4} + 24076696 T^{6} + 2452314988 T^{8} + 24076696 p^{2} T^{10} + 153349 p^{4} T^{12} + 580 p^{6} T^{14} + p^{8} T^{16} \)
89 \( 1 + 352 T^{2} + 56785 T^{4} + 6152944 T^{6} + 566976832 T^{8} + 6152944 p^{2} T^{10} + 56785 p^{4} T^{12} + 352 p^{6} T^{14} + p^{8} T^{16} \)
97 \( 1 + 552 T^{2} + 149401 T^{4} + 25431336 T^{6} + 2953446192 T^{8} + 25431336 p^{2} T^{10} + 149401 p^{4} T^{12} + 552 p^{6} T^{14} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.01212982468615553150601694090, −2.84124660605530791360209117719, −2.72916223728598444116356418232, −2.55642933216099468438077311874, −2.51833698342167837379330249693, −2.40806584639586126538802125475, −2.37482608809075673858517348236, −2.36000474385316135391289043624, −2.25770410425083121766479489296, −1.77934002057206242163037134062, −1.72980816456324687259622417170, −1.64193100055996590284598229811, −1.58843908156041905077205389457, −1.58604207356770858212218078157, −1.54601136079420687308164094913, −1.47765951244142544388607883523, −1.36122914944754477539049669343, −1.13346455843218826347840822650, −0.872361812391284278050693734228, −0.808715456629294683021095985855, −0.69514370198416298178030572049, −0.58498703495991908436640865326, −0.50233873905416147868709245124, −0.15734844204356683653618836233, −0.15161895261114972287139250364, 0.15161895261114972287139250364, 0.15734844204356683653618836233, 0.50233873905416147868709245124, 0.58498703495991908436640865326, 0.69514370198416298178030572049, 0.808715456629294683021095985855, 0.872361812391284278050693734228, 1.13346455843218826347840822650, 1.36122914944754477539049669343, 1.47765951244142544388607883523, 1.54601136079420687308164094913, 1.58604207356770858212218078157, 1.58843908156041905077205389457, 1.64193100055996590284598229811, 1.72980816456324687259622417170, 1.77934002057206242163037134062, 2.25770410425083121766479489296, 2.36000474385316135391289043624, 2.37482608809075673858517348236, 2.40806584639586126538802125475, 2.51833698342167837379330249693, 2.55642933216099468438077311874, 2.72916223728598444116356418232, 2.84124660605530791360209117719, 3.01212982468615553150601694090

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.